mirror of
https://github.com/orange-cpp/omath.git
synced 2026-02-13 07:03:25 +00:00
Add documentation for collision detection and mesh classes
Co-authored-by: orange-cpp <59374393+orange-cpp@users.noreply.github.com>
This commit is contained in:
322
docs/collision/epa_algorithm.md
Normal file
322
docs/collision/epa_algorithm.md
Normal file
@@ -0,0 +1,322 @@
|
||||
# `omath::collision::Epa` — Expanding Polytope Algorithm for penetration depth
|
||||
|
||||
> Header: `omath/collision/epa_algorithm.hpp`
|
||||
> Namespace: `omath::collision`
|
||||
> Depends on: `Simplex<VertexType>`, collider types with `find_abs_furthest_vertex` method
|
||||
> Algorithm: **EPA** (Expanding Polytope Algorithm) for penetration depth and contact normal
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The **EPA (Expanding Polytope Algorithm)** calculates the **penetration depth** and **separation normal** between two intersecting convex shapes. It is typically used as a follow-up to the GJK algorithm after a collision has been detected.
|
||||
|
||||
EPA takes a 4-point simplex containing the origin (from GJK) and iteratively expands it to find the point on the Minkowski difference closest to the origin. This point gives both:
|
||||
* **Depth**: minimum translation distance to separate the shapes
|
||||
* **Normal**: direction of separation (pointing from shape B to shape A)
|
||||
|
||||
`Epa` is a template class working with any collider type that implements the support function interface.
|
||||
|
||||
---
|
||||
|
||||
## `Epa::Result`
|
||||
|
||||
```cpp
|
||||
struct Result final {
|
||||
bool success{false}; // true if EPA converged
|
||||
Vertex normal{}; // outward normal (from B to A)
|
||||
float depth{0.0f}; // penetration depth
|
||||
int iterations{0}; // number of iterations performed
|
||||
int num_vertices{0}; // final polytope vertex count
|
||||
int num_faces{0}; // final polytope face count
|
||||
};
|
||||
```
|
||||
|
||||
### Fields
|
||||
|
||||
* `success` — `true` if EPA successfully computed depth and normal; `false` if it failed to converge
|
||||
* `normal` — unit vector pointing from shape B toward shape A (separation direction)
|
||||
* `depth` — minimum distance to move shape A along `normal` to separate the shapes
|
||||
* `iterations` — actual iteration count (useful for performance tuning)
|
||||
* `num_vertices`, `num_faces` — final polytope size (for diagnostics)
|
||||
|
||||
---
|
||||
|
||||
## `Epa::Params`
|
||||
|
||||
```cpp
|
||||
struct Params final {
|
||||
int max_iterations{64}; // maximum iterations before giving up
|
||||
float tolerance{1e-4f}; // absolute tolerance on distance growth
|
||||
};
|
||||
```
|
||||
|
||||
### Fields
|
||||
|
||||
* `max_iterations` — safety limit to prevent infinite loops (default 64)
|
||||
* `tolerance` — convergence threshold: stop when distance grows less than this (default 1e-4)
|
||||
|
||||
---
|
||||
|
||||
## `Epa` Template Class
|
||||
|
||||
```cpp
|
||||
template<class ColliderType>
|
||||
class Epa final {
|
||||
public:
|
||||
using Vertex = typename ColliderType::VertexType;
|
||||
static_assert(EpaVector<Vertex>, "VertexType must satisfy EpaVector concept");
|
||||
|
||||
// Solve for penetration depth and normal
|
||||
[[nodiscard]]
|
||||
static Result solve(
|
||||
const ColliderType& a,
|
||||
const ColliderType& b,
|
||||
const Simplex<Vertex>& simplex,
|
||||
const Params params = {}
|
||||
);
|
||||
};
|
||||
```
|
||||
|
||||
### Precondition
|
||||
|
||||
The `simplex` parameter must:
|
||||
* Have exactly 4 points (`simplex.size() == 4`)
|
||||
* Contain the origin (i.e., be a valid GJK result with `hit == true`)
|
||||
|
||||
Violating this precondition leads to undefined behavior.
|
||||
|
||||
---
|
||||
|
||||
## Collider Requirements
|
||||
|
||||
Any type used as `ColliderType` must provide:
|
||||
|
||||
```cpp
|
||||
// Type alias for vertex type (typically Vector3<float>)
|
||||
using VertexType = /* ... */;
|
||||
|
||||
// Find the farthest point in world space along the given direction
|
||||
[[nodiscard]]
|
||||
VertexType find_abs_furthest_vertex(const VertexType& direction) const;
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Algorithm Details
|
||||
|
||||
### Expanding Polytope
|
||||
|
||||
EPA maintains a convex polytope (polyhedron) in Minkowski difference space `A - B`. Starting from the 4-point tetrahedron (simplex from GJK), it repeatedly:
|
||||
|
||||
1. **Find closest face** to the origin
|
||||
2. **Support query** in the direction of the face normal
|
||||
3. **Expand polytope** by adding the new support point
|
||||
4. **Update faces** to maintain convexity
|
||||
|
||||
The algorithm terminates when:
|
||||
* **Convergence**: the distance from origin to polytope stops growing (within tolerance)
|
||||
* **Max iterations**: safety limit reached
|
||||
* **Failure cases**: degenerate polytope or numerical issues
|
||||
|
||||
### Minkowski Difference
|
||||
|
||||
Like GJK, EPA operates in Minkowski difference space where `point = a - b` for points in shapes A and B. The closest point on this polytope to the origin gives the minimum separation.
|
||||
|
||||
### Face Winding
|
||||
|
||||
Faces are stored with outward-pointing normals. The algorithm uses a priority queue to efficiently find the face closest to the origin.
|
||||
|
||||
---
|
||||
|
||||
## Vertex Type Requirements
|
||||
|
||||
The `VertexType` must satisfy the `EpaVector` concept:
|
||||
|
||||
```cpp
|
||||
template<class V>
|
||||
concept EpaVector = requires(const V& a, const V& b, float s) {
|
||||
{ a - b } -> std::same_as<V>;
|
||||
{ a.cross(b) } -> std::same_as<V>;
|
||||
{ a.dot(b) } -> std::same_as<float>;
|
||||
{ -a } -> std::same_as<V>;
|
||||
{ a * s } -> std::same_as<V>;
|
||||
{ a / s } -> std::same_as<V>;
|
||||
};
|
||||
```
|
||||
|
||||
`omath::Vector3<float>` satisfies this concept.
|
||||
|
||||
---
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic EPA Usage
|
||||
|
||||
```cpp
|
||||
using namespace omath::collision;
|
||||
using namespace omath::source_engine;
|
||||
|
||||
// First, run GJK to detect collision
|
||||
MeshCollider<Mesh> collider_a(mesh_a);
|
||||
MeshCollider<Mesh> collider_b(mesh_b);
|
||||
|
||||
auto gjk_result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
|
||||
collider_a,
|
||||
collider_b
|
||||
);
|
||||
|
||||
if (gjk_result.hit) {
|
||||
// Collision detected, use EPA to get penetration info
|
||||
auto epa_result = Epa<MeshCollider<Mesh>>::solve(
|
||||
collider_a,
|
||||
collider_b,
|
||||
gjk_result.simplex
|
||||
);
|
||||
|
||||
if (epa_result.success) {
|
||||
std::cout << "Penetration depth: " << epa_result.depth << "\n";
|
||||
std::cout << "Separation normal: "
|
||||
<< "(" << epa_result.normal.x << ", "
|
||||
<< epa_result.normal.y << ", "
|
||||
<< epa_result.normal.z << ")\n";
|
||||
|
||||
// Apply separation: move A away from B
|
||||
Vector3<float> correction = epa_result.normal * epa_result.depth;
|
||||
mesh_a.set_origin(mesh_a.get_origin() + correction);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Custom Parameters
|
||||
|
||||
```cpp
|
||||
// Use custom convergence settings
|
||||
Epa<Collider>::Params params;
|
||||
params.max_iterations = 128; // Allow more iterations for complex shapes
|
||||
params.tolerance = 1e-5f; // Tighter tolerance for more accuracy
|
||||
|
||||
auto result = Epa<Collider>::solve(a, b, simplex, params);
|
||||
```
|
||||
|
||||
### Physics Integration
|
||||
|
||||
```cpp
|
||||
void resolve_collision(PhysicsBody& body_a, PhysicsBody& body_b) {
|
||||
auto gjk_result = GjkAlgorithm<Collider>::check_collision(
|
||||
body_a.collider, body_b.collider
|
||||
);
|
||||
|
||||
if (!gjk_result.hit)
|
||||
return; // No collision
|
||||
|
||||
auto epa_result = Epa<Collider>::solve(
|
||||
body_a.collider,
|
||||
body_b.collider,
|
||||
gjk_result.simplex
|
||||
);
|
||||
|
||||
if (epa_result.success) {
|
||||
// Separate bodies
|
||||
float mass_sum = body_a.mass + body_b.mass;
|
||||
float ratio_a = body_b.mass / mass_sum;
|
||||
float ratio_b = body_a.mass / mass_sum;
|
||||
|
||||
body_a.position += epa_result.normal * (epa_result.depth * ratio_a);
|
||||
body_b.position -= epa_result.normal * (epa_result.depth * ratio_b);
|
||||
|
||||
// Apply collision response
|
||||
apply_impulse(body_a, body_b, epa_result.normal);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
* **Time complexity**: O(k × f) where k is iterations and f is faces per iteration (typically f grows slowly)
|
||||
* **Space complexity**: O(n) where n is the number of polytope vertices (typically < 100)
|
||||
* **Typical iterations**: 4-20 for most collisions
|
||||
* **Worst case**: 64 iterations (configurable limit)
|
||||
|
||||
### Performance Tips
|
||||
|
||||
1. **Adjust max_iterations**: Balance accuracy vs. performance for your use case
|
||||
2. **Tolerance tuning**: Larger tolerance = faster convergence but less accurate
|
||||
3. **Shape complexity**: Simpler shapes (fewer faces) converge faster
|
||||
4. **Deep penetrations**: Require more iterations; consider broad-phase separation
|
||||
|
||||
---
|
||||
|
||||
## Limitations & Edge Cases
|
||||
|
||||
* **Requires valid simplex**: Must be called with a 4-point simplex containing the origin (from successful GJK)
|
||||
* **Convex shapes only**: Like GJK, EPA only works with convex colliders
|
||||
* **Convergence failure**: Can fail to converge for degenerate or very thin shapes (check `result.success`)
|
||||
* **Numerical precision**: Extreme scale differences or very small shapes may cause issues
|
||||
* **Deep penetration**: Very deep intersections may require many iterations or fail to converge
|
||||
|
||||
### Error Handling
|
||||
|
||||
```cpp
|
||||
auto result = Epa<Collider>::solve(a, b, simplex);
|
||||
|
||||
if (!result.success) {
|
||||
// EPA failed to converge
|
||||
// Fallback options:
|
||||
// 1. Use a default separation (e.g., axis between centers)
|
||||
// 2. Increase max_iterations and retry
|
||||
// 3. Log a warning and skip this collision
|
||||
std::cerr << "EPA failed after " << result.iterations << " iterations\n";
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Theory & Background
|
||||
|
||||
### Why EPA after GJK?
|
||||
|
||||
GJK determines **if** shapes intersect but doesn't compute penetration depth. EPA extends GJK's final simplex to find the exact depth and normal needed for:
|
||||
* **Collision response** — separating objects realistically
|
||||
* **Contact manifolds** — generating contact points for physics
|
||||
* **Constraint solving** — iterative physics solvers
|
||||
|
||||
### Comparison with SAT
|
||||
|
||||
| Feature | EPA | SAT (Separating Axis Theorem) |
|
||||
|---------|-----|-------------------------------|
|
||||
| Works with | Any convex shape | Polytopes (faces/edges) |
|
||||
| Penetration depth | Yes | Yes |
|
||||
| Complexity | Iterative | Per-axis projection |
|
||||
| Best for | General convex | Boxes, prisms |
|
||||
| Typical speed | Moderate | Fast (few axes) |
|
||||
|
||||
EPA is more general; SAT is faster for axis-aligned shapes.
|
||||
|
||||
---
|
||||
|
||||
## Implementation Details
|
||||
|
||||
The EPA implementation in OMath:
|
||||
* Uses a **priority queue** to efficiently find the closest face
|
||||
* Maintains face winding for consistent normals
|
||||
* Handles **edge cases**: degenerate faces, numerical instability
|
||||
* Prevents infinite loops with iteration limits
|
||||
* Returns detailed diagnostics (iteration count, polytope size)
|
||||
|
||||
---
|
||||
|
||||
## See Also
|
||||
|
||||
- [GJK Algorithm Documentation](gjk_algorithm.md) - Collision detection (required before EPA)
|
||||
- [Simplex Documentation](simplex.md) - Input simplex structure
|
||||
- [MeshCollider Documentation](mesh_collider.md) - Mesh-based collider
|
||||
- [Mesh Documentation](../3d_primitives/mesh.md) - Mesh primitive
|
||||
- [Tutorials - Collision Detection](../tutorials.md#tutorial-4-collision-detection) - Complete collision tutorial
|
||||
- [API Overview](../api_overview.md) - High-level API reference
|
||||
|
||||
---
|
||||
|
||||
*Last updated: 13 Nov 2025*
|
||||
216
docs/collision/gjk_algorithm.md
Normal file
216
docs/collision/gjk_algorithm.md
Normal file
@@ -0,0 +1,216 @@
|
||||
# `omath::collision::GjkAlgorithm` — Gilbert-Johnson-Keerthi collision detection
|
||||
|
||||
> Header: `omath/collision/gjk_algorithm.hpp`
|
||||
> Namespace: `omath::collision`
|
||||
> Depends on: `Simplex<VertexType>`, collider types with `find_abs_furthest_vertex` method
|
||||
> Algorithm: **GJK** (Gilbert-Johnson-Keerthi) for convex shape collision detection
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The **GJK algorithm** determines whether two convex shapes intersect by iteratively constructing a simplex in Minkowski difference space. The algorithm is widely used in physics engines and collision detection systems due to its efficiency and robustness.
|
||||
|
||||
`GjkAlgorithm` is a template class that works with any collider type implementing the required support function interface:
|
||||
|
||||
* `find_abs_furthest_vertex(direction)` — returns the farthest point in the collider along the given direction.
|
||||
|
||||
The algorithm returns a `GjkHitInfo` containing:
|
||||
* `hit` — boolean indicating whether the shapes intersect
|
||||
* `simplex` — a 4-point simplex containing the origin (valid only when `hit == true`)
|
||||
|
||||
---
|
||||
|
||||
## `GjkHitInfo`
|
||||
|
||||
```cpp
|
||||
template<class VertexType>
|
||||
struct GjkHitInfo final {
|
||||
bool hit{false}; // true if collision detected
|
||||
Simplex<VertexType> simplex; // 4-point simplex (valid only if hit == true)
|
||||
};
|
||||
```
|
||||
|
||||
The `simplex` field is only meaningful when `hit == true` and contains 4 points. This simplex can be passed to the EPA algorithm for penetration depth calculation.
|
||||
|
||||
---
|
||||
|
||||
## `GjkAlgorithm`
|
||||
|
||||
```cpp
|
||||
template<class ColliderType>
|
||||
class GjkAlgorithm final {
|
||||
using VertexType = typename ColliderType::VertexType;
|
||||
|
||||
public:
|
||||
// Find support vertex in Minkowski difference
|
||||
[[nodiscard]]
|
||||
static VertexType find_support_vertex(
|
||||
const ColliderType& collider_a,
|
||||
const ColliderType& collider_b,
|
||||
const VertexType& direction
|
||||
);
|
||||
|
||||
// Check if two convex shapes intersect
|
||||
[[nodiscard]]
|
||||
static GjkHitInfo<VertexType> check_collision(
|
||||
const ColliderType& collider_a,
|
||||
const ColliderType& collider_b
|
||||
);
|
||||
};
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Collider Requirements
|
||||
|
||||
Any type used as `ColliderType` must provide:
|
||||
|
||||
```cpp
|
||||
// Type alias for vertex type (typically Vector3<float>)
|
||||
using VertexType = /* ... */;
|
||||
|
||||
// Find the farthest point in world space along the given direction
|
||||
[[nodiscard]]
|
||||
VertexType find_abs_furthest_vertex(const VertexType& direction) const;
|
||||
```
|
||||
|
||||
Common collider types:
|
||||
* `MeshCollider<MeshType>` — for arbitrary triangle meshes
|
||||
* Custom colliders for spheres, boxes, capsules, etc.
|
||||
|
||||
---
|
||||
|
||||
## Algorithm Details
|
||||
|
||||
### Minkowski Difference
|
||||
|
||||
GJK operates in the **Minkowski difference** space `A - B`, where a point in this space represents the difference between points in shapes A and B. The shapes intersect if and only if the origin lies within this Minkowski difference.
|
||||
|
||||
### Support Function
|
||||
|
||||
The support function finds the point in the Minkowski difference farthest along a given direction:
|
||||
|
||||
```cpp
|
||||
support(A, B, dir) = A.furthest(dir) - B.furthest(-dir)
|
||||
```
|
||||
|
||||
This is computed by `find_support_vertex`.
|
||||
|
||||
### Simplex Iteration
|
||||
|
||||
The algorithm builds a simplex incrementally:
|
||||
1. Start with an initial direction (typically vector between shape centers)
|
||||
2. Add support vertices in directions that move the simplex toward the origin
|
||||
3. Simplify the simplex to keep only points closest to the origin
|
||||
4. Repeat until either:
|
||||
* Origin is contained (collision detected, returns 4-point simplex)
|
||||
* No progress can be made (no collision)
|
||||
|
||||
Maximum 64 iterations are performed to prevent infinite loops in edge cases.
|
||||
|
||||
---
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Collision Check
|
||||
|
||||
```cpp
|
||||
using namespace omath::collision;
|
||||
using namespace omath::source_engine;
|
||||
|
||||
// Create mesh colliders
|
||||
Mesh mesh_a = /* ... */;
|
||||
Mesh mesh_b = /* ... */;
|
||||
|
||||
MeshCollider collider_a(mesh_a);
|
||||
MeshCollider collider_b(mesh_b);
|
||||
|
||||
// Check for collision
|
||||
auto result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
|
||||
collider_a,
|
||||
collider_b
|
||||
);
|
||||
|
||||
if (result.hit) {
|
||||
std::cout << "Collision detected!\n";
|
||||
// Can pass result.simplex to EPA for penetration depth
|
||||
}
|
||||
```
|
||||
|
||||
### Combined with EPA
|
||||
|
||||
```cpp
|
||||
auto gjk_result = GjkAlgorithm<Collider>::check_collision(a, b);
|
||||
|
||||
if (gjk_result.hit) {
|
||||
// Get penetration depth and normal using EPA
|
||||
auto epa_result = Epa<Collider>::solve(
|
||||
a, b, gjk_result.simplex
|
||||
);
|
||||
|
||||
if (epa_result.success) {
|
||||
std::cout << "Penetration depth: " << epa_result.depth << "\n";
|
||||
std::cout << "Separation normal: " << epa_result.normal << "\n";
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
* **Time complexity**: O(k) where k is the number of iterations (typically < 20 for most cases)
|
||||
* **Space complexity**: O(1) — only stores a 4-point simplex
|
||||
* **Best case**: 4-8 iterations for well-separated objects
|
||||
* **Worst case**: 64 iterations (hard limit)
|
||||
* **Cache efficient**: operates on small fixed-size data structures
|
||||
|
||||
### Optimization Tips
|
||||
|
||||
1. **Initial direction**: Use vector between shape centers for faster convergence
|
||||
2. **Early exit**: GJK quickly rejects non-intersecting shapes
|
||||
3. **Warm starting**: Reuse previous simplex for continuous collision detection
|
||||
4. **Broad phase**: Use spatial partitioning before GJK (AABB trees, grids)
|
||||
|
||||
---
|
||||
|
||||
## Limitations & Edge Cases
|
||||
|
||||
* **Convex shapes only**: GJK only works with convex colliders. For concave shapes, decompose into convex parts or use a mesh collider wrapper.
|
||||
* **Degenerate simplices**: The algorithm handles degenerate cases, but numerical precision can cause issues with very thin or flat shapes.
|
||||
* **Iteration limit**: Hard limit of 64 iterations prevents infinite loops but may miss collisions in extreme cases.
|
||||
* **Zero-length directions**: The simplex update logic guards against zero-length vectors, returning safe fallbacks.
|
||||
|
||||
---
|
||||
|
||||
## Vertex Type Requirements
|
||||
|
||||
The `VertexType` must satisfy the `GjkVector` concept (defined in `simplex.hpp`):
|
||||
|
||||
```cpp
|
||||
template<class V>
|
||||
concept GjkVector = requires(const V& a, const V& b) {
|
||||
{ -a } -> std::same_as<V>;
|
||||
{ a - b } -> std::same_as<V>;
|
||||
{ a.cross(b) } -> std::same_as<V>;
|
||||
{ a.point_to_same_direction(b) } -> std::same_as<bool>;
|
||||
};
|
||||
```
|
||||
|
||||
`omath::Vector3<float>` satisfies this concept.
|
||||
|
||||
---
|
||||
|
||||
## See Also
|
||||
|
||||
- [EPA Algorithm Documentation](epa_algorithm.md) - Penetration depth calculation
|
||||
- [Simplex Documentation](simplex.md) - Simplex data structure
|
||||
- [MeshCollider Documentation](mesh_collider.md) - Mesh-based collider
|
||||
- [Mesh Documentation](../3d_primitives/mesh.md) - Mesh primitive
|
||||
- [LineTracer Documentation](line_tracer.md) - Ray-triangle intersection
|
||||
- [Tutorials - Collision Detection](../tutorials.md#tutorial-4-collision-detection) - Complete collision tutorial
|
||||
|
||||
---
|
||||
|
||||
*Last updated: 13 Nov 2025*
|
||||
371
docs/collision/mesh_collider.md
Normal file
371
docs/collision/mesh_collider.md
Normal file
@@ -0,0 +1,371 @@
|
||||
# `omath::collision::MeshCollider` — Convex hull collider for meshes
|
||||
|
||||
> Header: `omath/collision/mesh_collider.hpp`
|
||||
> Namespace: `omath::collision`
|
||||
> Depends on: `omath::primitives::Mesh`, `omath::Vector3<T>`
|
||||
> Purpose: wrap a mesh to provide collision detection support for GJK/EPA
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
`MeshCollider` wraps a `Mesh` object to provide the **support function** interface required by the GJK and EPA collision detection algorithms. The support function finds the vertex of the mesh farthest along a given direction, which is essential for constructing Minkowski difference simplices.
|
||||
|
||||
**Important**: `MeshCollider` assumes the mesh represents a **convex hull**. For non-convex shapes, you must either:
|
||||
* Decompose into convex parts
|
||||
* Use the convex hull of the mesh
|
||||
* Use a different collision detection algorithm
|
||||
|
||||
---
|
||||
|
||||
## Template Declaration
|
||||
|
||||
```cpp
|
||||
template<class MeshType>
|
||||
class MeshCollider;
|
||||
```
|
||||
|
||||
### MeshType Requirements
|
||||
|
||||
The `MeshType` must be an instantiation of `omath::primitives::Mesh` or provide:
|
||||
|
||||
```cpp
|
||||
struct MeshType {
|
||||
using NumericType = /* float, double, etc. */;
|
||||
|
||||
std::vector<Vector3<NumericType>> m_vertex_buffer;
|
||||
|
||||
// Transform vertex from local to world space
|
||||
Vector3<NumericType> vertex_to_world_space(const Vector3<NumericType>&) const;
|
||||
};
|
||||
```
|
||||
|
||||
Common types:
|
||||
* `omath::source_engine::Mesh`
|
||||
* `omath::unity_engine::Mesh`
|
||||
* `omath::unreal_engine::Mesh`
|
||||
* `omath::frostbite_engine::Mesh`
|
||||
* `omath::iw_engine::Mesh`
|
||||
* `omath::opengl_engine::Mesh`
|
||||
|
||||
---
|
||||
|
||||
## Type Aliases
|
||||
|
||||
```cpp
|
||||
using NumericType = typename MeshType::NumericType;
|
||||
using VertexType = Vector3<NumericType>;
|
||||
```
|
||||
|
||||
* `NumericType` — scalar type (typically `float`)
|
||||
* `VertexType` — 3D vector type for vertices
|
||||
|
||||
---
|
||||
|
||||
## Constructor
|
||||
|
||||
```cpp
|
||||
explicit MeshCollider(MeshType mesh);
|
||||
```
|
||||
|
||||
Creates a collider from a mesh. The mesh is **moved** into the collider, so pass by value:
|
||||
|
||||
```cpp
|
||||
omath::source_engine::Mesh my_mesh = /* ... */;
|
||||
MeshCollider collider(std::move(my_mesh));
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Methods
|
||||
|
||||
### `find_furthest_vertex`
|
||||
|
||||
```cpp
|
||||
[[nodiscard]]
|
||||
const VertexType& find_furthest_vertex(const VertexType& direction) const;
|
||||
```
|
||||
|
||||
Finds the vertex in the mesh's **local space** that has the maximum dot product with `direction`.
|
||||
|
||||
**Algorithm**: Linear search through all vertices (O(n) where n is vertex count).
|
||||
|
||||
**Returns**: Const reference to the vertex in `m_vertex_buffer`.
|
||||
|
||||
---
|
||||
|
||||
### `find_abs_furthest_vertex`
|
||||
|
||||
```cpp
|
||||
[[nodiscard]]
|
||||
VertexType find_abs_furthest_vertex(const VertexType& direction) const;
|
||||
```
|
||||
|
||||
Finds the vertex farthest along `direction` and transforms it to **world space**. This is the primary method used by GJK/EPA.
|
||||
|
||||
**Steps**:
|
||||
1. Find furthest vertex in local space using `find_furthest_vertex`
|
||||
2. Transform to world space using `mesh.vertex_to_world_space()`
|
||||
|
||||
**Returns**: Vertex position in world coordinates.
|
||||
|
||||
**Usage in GJK**:
|
||||
```cpp
|
||||
// GJK support function for Minkowski difference
|
||||
VertexType support = collider_a.find_abs_furthest_vertex(direction)
|
||||
- collider_b.find_abs_furthest_vertex(-direction);
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Basic Collision Detection
|
||||
|
||||
```cpp
|
||||
using namespace omath::collision;
|
||||
using namespace omath::source_engine;
|
||||
|
||||
// Create meshes with vertex data
|
||||
std::vector<Vector3<float>> vbo_a = {
|
||||
{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},
|
||||
{-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}
|
||||
};
|
||||
std::vector<Vector3<std::size_t>> vao_a = /* face indices */;
|
||||
|
||||
Mesh mesh_a(vbo_a, vao_a);
|
||||
mesh_a.set_origin({0, 0, 0});
|
||||
|
||||
Mesh mesh_b(vbo_b, vao_b);
|
||||
mesh_b.set_origin({5, 0, 0}); // Positioned away from mesh_a
|
||||
|
||||
// Wrap in colliders
|
||||
MeshCollider<Mesh> collider_a(std::move(mesh_a));
|
||||
MeshCollider<Mesh> collider_b(std::move(mesh_b));
|
||||
|
||||
// Run GJK
|
||||
auto result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
|
||||
collider_a, collider_b
|
||||
);
|
||||
|
||||
if (result.hit) {
|
||||
std::cout << "Collision detected!\n";
|
||||
}
|
||||
```
|
||||
|
||||
### With EPA for Penetration Depth
|
||||
|
||||
```cpp
|
||||
auto gjk_result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
|
||||
collider_a, collider_b
|
||||
);
|
||||
|
||||
if (gjk_result.hit) {
|
||||
auto epa_result = Epa<MeshCollider<Mesh>>::solve(
|
||||
collider_a, collider_b, gjk_result.simplex
|
||||
);
|
||||
|
||||
if (epa_result.success) {
|
||||
std::cout << "Penetration: " << epa_result.depth << " units\n";
|
||||
std::cout << "Normal: " << epa_result.normal << "\n";
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Custom Mesh Creation
|
||||
|
||||
```cpp
|
||||
// Create a simple box mesh
|
||||
std::vector<Vector3<float>> box_vertices = {
|
||||
{-0.5f, -0.5f, -0.5f}, { 0.5f, -0.5f, -0.5f},
|
||||
{ 0.5f, 0.5f, -0.5f}, {-0.5f, 0.5f, -0.5f},
|
||||
{-0.5f, -0.5f, 0.5f}, { 0.5f, -0.5f, 0.5f},
|
||||
{ 0.5f, 0.5f, 0.5f}, {-0.5f, 0.5f, 0.5f}
|
||||
};
|
||||
|
||||
std::vector<Vector3<std::size_t>> box_indices = {
|
||||
{0, 1, 2}, {0, 2, 3}, // Front face
|
||||
{4, 6, 5}, {4, 7, 6}, // Back face
|
||||
{0, 4, 5}, {0, 5, 1}, // Bottom face
|
||||
{2, 6, 7}, {2, 7, 3}, // Top face
|
||||
{0, 3, 7}, {0, 7, 4}, // Left face
|
||||
{1, 5, 6}, {1, 6, 2} // Right face
|
||||
};
|
||||
|
||||
using namespace omath::source_engine;
|
||||
Mesh box_mesh(box_vertices, box_indices);
|
||||
box_mesh.set_origin({10, 0, 0});
|
||||
box_mesh.set_scale({2, 2, 2});
|
||||
|
||||
MeshCollider<Mesh> box_collider(std::move(box_mesh));
|
||||
```
|
||||
|
||||
### Oriented Collision
|
||||
|
||||
```cpp
|
||||
// Create rotated mesh
|
||||
Mesh mesh(vertices, indices);
|
||||
mesh.set_origin({5, 5, 5});
|
||||
mesh.set_scale({1, 1, 1});
|
||||
|
||||
// Set rotation (engine-specific angles)
|
||||
ViewAngles rotation;
|
||||
rotation.pitch = PitchAngle::from_degrees(45.0f);
|
||||
rotation.yaw = YawAngle::from_degrees(30.0f);
|
||||
mesh.set_rotation(rotation);
|
||||
|
||||
// Collider automatically handles transformation
|
||||
MeshCollider<Mesh> collider(std::move(mesh));
|
||||
|
||||
// Support function returns world-space vertices
|
||||
auto support = collider.find_abs_furthest_vertex({0, 1, 0});
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Linear Search
|
||||
|
||||
`find_furthest_vertex` performs a **linear search** through all vertices:
|
||||
* **Time complexity**: O(n) per support query
|
||||
* **GJK iterations**: ~10-20 support queries per collision test
|
||||
* **Total cost**: O(k × n) where k is GJK iterations
|
||||
|
||||
For meshes with many vertices (>1000), consider:
|
||||
* Using simpler proxy geometry (bounding box, convex hull with fewer vertices)
|
||||
* Pre-computing hierarchical structures
|
||||
* Using specialized collision shapes when possible
|
||||
|
||||
### Caching Opportunities
|
||||
|
||||
The implementation uses `std::ranges::max_element`, which is cache-friendly for contiguous vertex buffers. For optimal performance:
|
||||
* Store vertices contiguously in memory
|
||||
* Avoid pointer-based or scattered vertex storage
|
||||
* Consider SoA (Structure of Arrays) layout for SIMD optimization
|
||||
|
||||
### World Space Transformation
|
||||
|
||||
The `vertex_to_world_space` call involves matrix multiplication:
|
||||
* **Cost**: ~15-20 floating-point operations per vertex
|
||||
* **Optimization**: The mesh caches its transformation matrix
|
||||
* **Update cost**: Only recomputed when origin/rotation/scale changes
|
||||
|
||||
---
|
||||
|
||||
## Limitations & Edge Cases
|
||||
|
||||
### Convex Hull Requirement
|
||||
|
||||
**Critical**: GJK/EPA only work with **convex shapes**. If your mesh is concave:
|
||||
|
||||
#### Option 1: Convex Decomposition
|
||||
```cpp
|
||||
// Decompose concave mesh into convex parts
|
||||
std::vector<Mesh> convex_parts = decompose_mesh(concave_mesh);
|
||||
|
||||
for (const auto& part : convex_parts) {
|
||||
MeshCollider collider(part);
|
||||
// Test each part separately
|
||||
}
|
||||
```
|
||||
|
||||
#### Option 2: Use Convex Hull
|
||||
```cpp
|
||||
// Compute convex hull of vertices
|
||||
auto hull_vertices = compute_convex_hull(mesh.m_vertex_buffer);
|
||||
Mesh hull_mesh(hull_vertices, hull_indices);
|
||||
MeshCollider collider(std::move(hull_mesh));
|
||||
```
|
||||
|
||||
#### Option 3: Different Algorithm
|
||||
Use triangle-based collision (e.g., LineTracer) for true concave support.
|
||||
|
||||
### Empty Mesh
|
||||
|
||||
Behavior is undefined if `m_vertex_buffer` is empty. Always ensure:
|
||||
```cpp
|
||||
assert(!mesh.m_vertex_buffer.empty());
|
||||
MeshCollider collider(std::move(mesh));
|
||||
```
|
||||
|
||||
### Degenerate Meshes
|
||||
|
||||
* **Single vertex**: Treated as a point (degenerates to sphere collision)
|
||||
* **Two vertices**: Line segment (may cause GJK issues)
|
||||
* **Coplanar vertices**: Flat mesh; EPA may have convergence issues
|
||||
|
||||
**Recommendation**: Use at least 4 non-coplanar vertices for robustness.
|
||||
|
||||
---
|
||||
|
||||
## Coordinate Systems
|
||||
|
||||
`MeshCollider` supports different engine coordinate systems through the `MeshTrait`:
|
||||
|
||||
| Engine | Up Axis | Handedness | Rotation Order |
|
||||
|--------|---------|------------|----------------|
|
||||
| Source Engine | Z | Right-handed | Pitch/Yaw/Roll |
|
||||
| Unity | Y | Left-handed | Pitch/Yaw/Roll |
|
||||
| Unreal | Z | Left-handed | Roll/Pitch/Yaw |
|
||||
| Frostbite | Y | Right-handed | Pitch/Yaw/Roll |
|
||||
| IW Engine | Z | Right-handed | Pitch/Yaw/Roll |
|
||||
| OpenGL | Y | Right-handed | Pitch/Yaw/Roll |
|
||||
|
||||
The `vertex_to_world_space` method handles these differences transparently.
|
||||
|
||||
---
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Support Function
|
||||
|
||||
For specialized collision shapes, implement a custom collider:
|
||||
|
||||
```cpp
|
||||
class SphereCollider {
|
||||
public:
|
||||
using VertexType = Vector3<float>;
|
||||
|
||||
Vector3<float> center;
|
||||
float radius;
|
||||
|
||||
VertexType find_abs_furthest_vertex(const VertexType& direction) const {
|
||||
auto normalized = direction.normalized();
|
||||
return center + normalized * radius;
|
||||
}
|
||||
};
|
||||
|
||||
// Use with GJK/EPA
|
||||
auto result = GjkAlgorithm<SphereCollider>::check_collision(sphere_a, sphere_b);
|
||||
```
|
||||
|
||||
### Debugging Support Queries
|
||||
|
||||
```cpp
|
||||
class DebugMeshCollider : public MeshCollider<Mesh> {
|
||||
public:
|
||||
using MeshCollider::MeshCollider;
|
||||
|
||||
VertexType find_abs_furthest_vertex(const VertexType& direction) const {
|
||||
auto result = MeshCollider::find_abs_furthest_vertex(direction);
|
||||
std::cout << "Support query: direction=" << direction
|
||||
<< " -> vertex=" << result << "\n";
|
||||
return result;
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## See Also
|
||||
|
||||
- [GJK Algorithm Documentation](gjk_algorithm.md) - Uses `MeshCollider` for collision detection
|
||||
- [EPA Algorithm Documentation](epa_algorithm.md) - Uses `MeshCollider` for penetration depth
|
||||
- [Simplex Documentation](simplex.md) - Data structure used by GJK
|
||||
- [Mesh Documentation](../3d_primitives/mesh.md) - Underlying mesh primitive
|
||||
- [Tutorials - Collision Detection](../tutorials.md#tutorial-4-collision-detection) - Complete collision tutorial
|
||||
|
||||
---
|
||||
|
||||
*Last updated: 13 Nov 2025*
|
||||
327
docs/collision/simplex.md
Normal file
327
docs/collision/simplex.md
Normal file
@@ -0,0 +1,327 @@
|
||||
# `omath::collision::Simplex` — Fixed-capacity simplex for GJK/EPA
|
||||
|
||||
> Header: `omath/collision/simplex.hpp`
|
||||
> Namespace: `omath::collision`
|
||||
> Depends on: `Vector3<float>` (or any type satisfying `GjkVector` concept)
|
||||
> Purpose: store and manipulate simplices in GJK and EPA algorithms
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
`Simplex` is a lightweight container for up to 4 points, used internally by the GJK and EPA collision detection algorithms. A simplex in this context is a geometric shape defined by 1 to 4 vertices:
|
||||
|
||||
* **1 point** — a single vertex
|
||||
* **2 points** — a line segment
|
||||
* **3 points** — a triangle
|
||||
* **4 points** — a tetrahedron
|
||||
|
||||
The GJK algorithm builds simplices incrementally to detect collisions, and EPA extends a 4-point simplex to compute penetration depth.
|
||||
|
||||
---
|
||||
|
||||
## Template & Concepts
|
||||
|
||||
```cpp
|
||||
template<GjkVector VectorType = Vector3<float>>
|
||||
class Simplex final;
|
||||
```
|
||||
|
||||
### `GjkVector` Concept
|
||||
|
||||
The vertex type must satisfy:
|
||||
|
||||
```cpp
|
||||
template<class V>
|
||||
concept GjkVector = requires(const V& a, const V& b) {
|
||||
{ -a } -> std::same_as<V>;
|
||||
{ a - b } -> std::same_as<V>;
|
||||
{ a.cross(b) } -> std::same_as<V>;
|
||||
{ a.point_to_same_direction(b) } -> std::same_as<bool>;
|
||||
};
|
||||
```
|
||||
|
||||
`omath::Vector3<float>` satisfies this concept and is the default.
|
||||
|
||||
---
|
||||
|
||||
## Constructors & Assignment
|
||||
|
||||
```cpp
|
||||
constexpr Simplex() = default;
|
||||
|
||||
constexpr Simplex& operator=(std::initializer_list<VectorType> list) noexcept;
|
||||
```
|
||||
|
||||
### Initialization
|
||||
|
||||
```cpp
|
||||
// Empty simplex
|
||||
Simplex<Vector3<float>> s;
|
||||
|
||||
// Initialize with points
|
||||
Simplex<Vector3<float>> s2;
|
||||
s2 = {v1, v2, v3}; // 3-point simplex (triangle)
|
||||
```
|
||||
|
||||
**Constraint**: Maximum 4 points. Passing more triggers an assertion in debug builds.
|
||||
|
||||
---
|
||||
|
||||
## Core Methods
|
||||
|
||||
### Adding Points
|
||||
|
||||
```cpp
|
||||
constexpr void push_front(const VectorType& p) noexcept;
|
||||
```
|
||||
|
||||
Inserts a point at the **front** (index 0), shifting existing points back. If the simplex is already at capacity (4 points), the last point is discarded.
|
||||
|
||||
**Usage pattern in GJK**:
|
||||
```cpp
|
||||
simplex.push_front(new_support_point);
|
||||
// Now simplex[0] is the newest point
|
||||
```
|
||||
|
||||
### Size & Capacity
|
||||
|
||||
```cpp
|
||||
[[nodiscard]] constexpr std::size_t size() const noexcept;
|
||||
[[nodiscard]] static constexpr std::size_t capacity = 4;
|
||||
```
|
||||
|
||||
* `size()` — current number of points (0-4)
|
||||
* `capacity` — maximum points (always 4)
|
||||
|
||||
### Element Access
|
||||
|
||||
```cpp
|
||||
[[nodiscard]] constexpr VectorType& operator[](std::size_t index) noexcept;
|
||||
[[nodiscard]] constexpr const VectorType& operator[](std::size_t index) const noexcept;
|
||||
```
|
||||
|
||||
Access points by index. **No bounds checking** — index must be `< size()`.
|
||||
|
||||
```cpp
|
||||
if (simplex.size() >= 2) {
|
||||
auto edge = simplex[1] - simplex[0];
|
||||
}
|
||||
```
|
||||
|
||||
### Iterators
|
||||
|
||||
```cpp
|
||||
[[nodiscard]] constexpr auto begin() noexcept;
|
||||
[[nodiscard]] constexpr auto end() noexcept;
|
||||
[[nodiscard]] constexpr auto begin() const noexcept;
|
||||
[[nodiscard]] constexpr auto end() const noexcept;
|
||||
```
|
||||
|
||||
Standard iterator support for range-based loops:
|
||||
|
||||
```cpp
|
||||
for (const auto& vertex : simplex) {
|
||||
std::cout << vertex << "\n";
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## GJK-Specific Methods
|
||||
|
||||
These methods implement the core logic for simplifying simplices in the GJK algorithm.
|
||||
|
||||
### `contains_origin`
|
||||
|
||||
```cpp
|
||||
[[nodiscard]] constexpr bool contains_origin() noexcept;
|
||||
```
|
||||
|
||||
Determines if the origin lies within the current simplex. This is the **core GJK test**: if true, the shapes intersect.
|
||||
|
||||
* For a **1-point** simplex, always returns `false` (can't contain origin)
|
||||
* For a **2-point** simplex (line), checks if origin projects onto the segment
|
||||
* For a **3-point** simplex (triangle), checks if origin projects onto the triangle
|
||||
* For a **4-point** simplex (tetrahedron), checks if origin is inside
|
||||
|
||||
**Side effect**: Simplifies the simplex by removing points not needed to maintain proximity to the origin. After calling, `size()` may have decreased.
|
||||
|
||||
**Return value**:
|
||||
* `true` — origin is contained (collision detected)
|
||||
* `false` — origin not contained; simplex has been simplified toward origin
|
||||
|
||||
### `next_direction`
|
||||
|
||||
```cpp
|
||||
[[nodiscard]] constexpr VectorType next_direction() const noexcept;
|
||||
```
|
||||
|
||||
Computes the next search direction for GJK. This is the direction from the simplex toward the origin, used to query the next support point.
|
||||
|
||||
* Must be called **after** `contains_origin()` returns `false`
|
||||
* Behavior is **undefined** if called when `size() == 0` or when origin is already contained
|
||||
|
||||
---
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### GJK Iteration (Simplified)
|
||||
|
||||
```cpp
|
||||
Simplex<Vector3<float>> simplex;
|
||||
Vector3<float> direction{1, 0, 0}; // Initial search direction
|
||||
|
||||
for (int i = 0; i < 64; ++i) {
|
||||
// Get support point in current direction
|
||||
auto support = find_support_vertex(collider_a, collider_b, direction);
|
||||
|
||||
// Check if we made progress
|
||||
if (support.dot(direction) <= 0)
|
||||
break; // No collision possible
|
||||
|
||||
simplex.push_front(support);
|
||||
|
||||
// Check if simplex contains origin
|
||||
if (simplex.contains_origin()) {
|
||||
// Collision detected!
|
||||
assert(simplex.size() == 4);
|
||||
return GjkHitInfo{true, simplex};
|
||||
}
|
||||
|
||||
// Get next search direction
|
||||
direction = simplex.next_direction();
|
||||
}
|
||||
|
||||
// No collision
|
||||
return GjkHitInfo{false, {}};
|
||||
```
|
||||
|
||||
### Manual Simplex Construction
|
||||
|
||||
```cpp
|
||||
using Vec3 = Vector3<float>;
|
||||
|
||||
Simplex<Vec3> simplex;
|
||||
simplex = {
|
||||
Vec3{0.0f, 0.0f, 0.0f},
|
||||
Vec3{1.0f, 0.0f, 0.0f},
|
||||
Vec3{0.0f, 1.0f, 0.0f},
|
||||
Vec3{0.0f, 0.0f, 1.0f}
|
||||
};
|
||||
|
||||
assert(simplex.size() == 4);
|
||||
|
||||
// Check if origin is inside this tetrahedron
|
||||
bool has_collision = simplex.contains_origin();
|
||||
```
|
||||
|
||||
### Iterating Over Points
|
||||
|
||||
```cpp
|
||||
void print_simplex(const Simplex<Vector3<float>>& s) {
|
||||
std::cout << "Simplex with " << s.size() << " points:\n";
|
||||
for (std::size_t i = 0; i < s.size(); ++i) {
|
||||
const auto& p = s[i];
|
||||
std::cout << " [" << i << "] = ("
|
||||
<< p.x << ", " << p.y << ", " << p.z << ")\n";
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Implementation Details
|
||||
|
||||
### Simplex Simplification
|
||||
|
||||
The `contains_origin()` method implements different tests based on simplex size:
|
||||
|
||||
#### Line Segment (2 points)
|
||||
|
||||
Checks if origin projects onto segment `[A, B]`:
|
||||
* If yes, keeps both points
|
||||
* If no, keeps only the closer point
|
||||
|
||||
#### Triangle (3 points)
|
||||
|
||||
Tests the origin against the triangle plane and edges using cross products. Simplifies to:
|
||||
* The full triangle if origin projects onto its surface
|
||||
* An edge if origin is closest to that edge
|
||||
* A single vertex otherwise
|
||||
|
||||
#### Tetrahedron (4 points)
|
||||
|
||||
Tests origin against all four faces:
|
||||
* If origin is inside, returns `true` (collision)
|
||||
* If outside, reduces to the face/edge/vertex closest to origin
|
||||
|
||||
### Direction Calculation
|
||||
|
||||
The `next_direction()` method computes:
|
||||
* For **line**: perpendicular from line toward origin
|
||||
* For **triangle**: perpendicular from triangle toward origin
|
||||
* Implementation uses cross products and projections to avoid sqrt when possible
|
||||
|
||||
---
|
||||
|
||||
## Performance Characteristics
|
||||
|
||||
* **Storage**: Fixed 4 × `sizeof(VectorType)` + size counter
|
||||
* **Push front**: O(n) where n is current size (max 4, so effectively O(1))
|
||||
* **Contains origin**: O(1) for each case (line, triangle, tetrahedron)
|
||||
* **Next direction**: O(1) — simple cross products and subtractions
|
||||
* **No heap allocations**: All storage is inline
|
||||
|
||||
**constexpr**: All methods are `constexpr`, enabling compile-time usage where feasible.
|
||||
|
||||
---
|
||||
|
||||
## Edge Cases & Constraints
|
||||
|
||||
### Degenerate Simplices
|
||||
|
||||
* **Zero-length edges**: Can occur if support points coincide. The algorithm handles this by checking `point_to_same_direction` before divisions.
|
||||
* **Collinear points**: Triangle simplification detects and handles collinear cases by reducing to a line.
|
||||
* **Flat tetrahedron**: If the 4th point is coplanar with the first 3, the origin containment test may have reduced precision.
|
||||
|
||||
### Assertions
|
||||
|
||||
* **Capacity**: `operator=` asserts `list.size() <= 4` in debug builds
|
||||
* **Index bounds**: No bounds checking in release builds — ensure `index < size()`
|
||||
|
||||
### Thread Safety
|
||||
|
||||
* **Read-only**: Safe to read from multiple threads
|
||||
* **Modification**: Not thread-safe; synchronize writes externally
|
||||
|
||||
---
|
||||
|
||||
## Relationship to GJK & EPA
|
||||
|
||||
### In GJK
|
||||
|
||||
* Starts empty or with an initial point
|
||||
* Grows via `push_front` as support points are added
|
||||
* Shrinks via `contains_origin` as it's simplified
|
||||
* Once it reaches 4 points and contains origin, GJK succeeds
|
||||
|
||||
### In EPA
|
||||
|
||||
* Takes a 4-point simplex from GJK as input
|
||||
* Uses the tetrahedron as the initial polytope
|
||||
* Does not directly use the `Simplex` class for expansion (EPA maintains a more complex polytope structure)
|
||||
|
||||
---
|
||||
|
||||
## See Also
|
||||
|
||||
- [GJK Algorithm Documentation](gjk_algorithm.md) - Uses `Simplex` for collision detection
|
||||
- [EPA Algorithm Documentation](epa_algorithm.md) - Takes 4-point `Simplex` as input
|
||||
- [MeshCollider Documentation](mesh_collider.md) - Provides support function for GJK/EPA
|
||||
- [Vector3 Documentation](../linear_algebra/vector3.md) - Default vertex type
|
||||
- [Tutorials - Collision Detection](../tutorials.md#tutorial-4-collision-detection) - Collision tutorial
|
||||
|
||||
---
|
||||
|
||||
*Last updated: 13 Nov 2025*
|
||||
Reference in New Issue
Block a user