Merge pull request #7 from orange-cpp/u/orange-cpp/added-stack-matrix

Added stack-based matrix class for rendering
This commit is contained in:
2024-10-01 05:20:44 -07:00
committed by GitHub
5 changed files with 557 additions and 8 deletions

303
include/omath/Mat.h Normal file
View File

@@ -0,0 +1,303 @@
//
// Created by vlad on 9/29/2024.
//
#pragma once
#include <array>
#include <sstream>
#include <utility>
#include "Vector3.h"
#include <stdexcept>
#include "Angles.h"
namespace omath
{
template <size_t Rows, size_t Columns>
class Mat final
{
public:
constexpr Mat()
{
Clear();
}
constexpr Mat(const std::initializer_list<std::initializer_list<float>>& rows)
{
if (rows.size() != Rows)
throw std::invalid_argument("Initializer list rows size does not match template parameter Rows");
auto rowIt = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++rowIt)
{
if (rowIt->size() != Columns)
throw std::invalid_argument("All rows must have the same number of columns as template parameter Columns");
auto colIt = rowIt->begin();
for (size_t j = 0; j < Columns; ++j, ++colIt)
{
At(i, j) = *colIt;
}
}
}
constexpr Mat(const Mat& other)
{
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) = other.At(i, j);
}
constexpr Mat(Mat&& other) noexcept
{
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) = other.At(i, j) ;
}
[[nodiscard]]
static constexpr size_t RowCount() noexcept { return Rows; }
[[nodiscard]]
static constexpr size_t ColumnsCount() noexcept { return Columns; }
[[nodiscard]]
static constexpr std::pair<size_t, size_t> Size() noexcept { return { Rows, Columns }; }
[[nodiscard]] constexpr const float& At(const size_t rowIndex, const size_t columnIndex) const
{
if (rowIndex >= Rows || columnIndex >= Columns)
throw std::out_of_range("Index out of range");
return m_data[rowIndex * Columns + columnIndex];
}
[[nodiscard]] constexpr float& At(const size_t rowIndex, const size_t columnIndex)
{
return const_cast<float&>(std::as_const(*this).At(rowIndex, columnIndex));
}
[[nodiscard]]
constexpr float Sum() const
{
float sum = 0.f;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
sum += At(i, j);
return sum;
}
constexpr void Clear()
{
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) = 0.f;
}
// Operator overloading for multiplication with another Mat
template <size_t OtherColumns>
constexpr Mat<Rows, OtherColumns> operator*(const Mat<Columns, OtherColumns>& other) const
{
Mat<Rows, OtherColumns> result;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < OtherColumns; ++j)
{
float sum = 0.f;
for (size_t k = 0; k < Columns; ++k)
sum += At(i, k) * other.At(k, j);
result.At(i, j) = sum;
}
return result;
}
constexpr Mat& operator*=(float f)
{
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) *= f;
return *this;
}
template <size_t OtherColumns>
constexpr Mat<Rows, OtherColumns> operator*=(const Mat<Columns, OtherColumns>& other)
{
return *this = *this * other;
}
constexpr Mat operator*(float f) const
{
Mat result(*this);
result *= f;
return result;
}
constexpr Mat& operator/=(float f)
{
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) /= f;
return *this;
}
constexpr Mat operator/(float f) const
{
Mat result(*this);
result /= f;
return result;
}
constexpr Mat& operator=(const Mat& other)
{
if (this == &other)
return *this;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) = other.At(i, j);
return *this;
}
constexpr Mat& operator=(Mat&& other) noexcept
{
if (this == &other)
return *this;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
At(i, j) = other.At(i, j);
return *this;
}
[[nodiscard]]
constexpr Mat<Columns, Rows> Transpose() const
{
Mat<Columns, Rows> transposed;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
transposed.At(j, i) = At(i, j);
return transposed;
}
[[nodiscard]]
constexpr float Determinant() const
{
static_assert(Rows == Columns, "Determinant is only defined for square matrices.");
if constexpr (Rows == 1)
return At(0, 0);
else if constexpr (Rows == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
else
{
float det = 0.f;
for (size_t i = 0; i < Columns; ++i)
{
const float cofactor = (i % 2 == 0 ? 1.f : -1.f) * At(0, i) * Minor(0, i).Determinant();
det += cofactor;
}
return det;
}
}
[[nodiscard]]
constexpr Mat<Rows - 1, Columns - 1> Minor(const size_t row, const size_t column) const
{
Mat<Rows - 1, Columns - 1> result;
for (size_t i = 0, m = 0; i < Rows; ++i)
{
if (i == row)
continue;
for (size_t j = 0, n = 0; j < Columns; ++j)
{
if (j == column)
continue;
result.At(m, n) = At(i, j);
++n;
}
++m;
}
return result;
}
[[nodiscard]]
std::string ToString() const
{
std::ostringstream oss;
for (size_t i = 0; i < Rows; ++i)
{
for (size_t j = 0; j < Columns; ++j)
{
oss << At(i, j);
if (j != Columns - 1)
oss << ' ';
}
oss << '\n';
}
return oss.str();
}
// Static methods that return fixed-size matrices
[[nodiscard]]
constexpr static Mat<4, 4> ToScreenMat(const float screenWidth, const float screenHeight)
{
return
{
{screenWidth / 2.f, 0.f, 0.f, 0.f},
{0.f, -screenHeight / 2.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{screenWidth / 2.f, screenHeight / 2.f, 0.f, 1.f},
};
}
[[nodiscard]]
constexpr static Mat<4, 4> TranslationMat(const Vector3& diff)
{
return
{
{1.f, 0.f, 0.f, 0.f},
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{diff.x, diff.y, diff.z, 1.f},
};
}
[[nodiscard]]
constexpr static Mat<4, 4> OrientationMat(const Vector3& forward, const Vector3& right, const Vector3& up)
{
Mat<4, 4> mat;
return
{
{right.x, up.x, forward.x, 0.f},
{right.y, up.y, forward.y, 0.f},
{right.z, up.z, forward.z, 0.f},
{0.f, 0.f, 0.f, 1.f},
};
return mat;
}
[[nodiscard]]
constexpr static Mat<4, 4> ProjectionMat(const float fieldOfView, const float aspectRatio, const float near, const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
return
{
{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), 2.f * near * far / (far - near)},
{0.f, 0.f, -1.f, 0.f}
};
}
private:
std::array<float, Rows*Columns> m_data;
};
}

View File

@@ -6,7 +6,7 @@
#include <expected>
#include <omath/Vector3.h>
#include <omath/Matrix.h>
#include <omath/Mat.h>
#include <string_view>
#include "ErrorCodes.h"
@@ -28,7 +28,7 @@ namespace omath::projection
Camera(const Vector3& position, const Vector3& viewAngles, const ViewPort& viewPort, float fov, float near, float far);
void SetViewAngles(const Vector3& viewAngles);
[[nodiscard]] Matrix GetViewMatrix() const;
[[nodiscard]] Mat<4, 4> GetViewMatrix() const;
[[nodiscard]] std::expected<Vector2, Error> WorldToScreen(const Vector3& worldPosition) const;

View File

@@ -21,24 +21,24 @@ namespace omath::projection
m_farPlaneDistance = far;
}
Matrix Camera::GetViewMatrix() const
Mat<4, 4> Camera::GetViewMatrix() const
{
const auto forward = Vector3::ForwardVector(m_viewAngles.x, m_viewAngles.y);
const auto right = Vector3::RightVector(m_viewAngles.x, m_viewAngles.y, m_viewAngles.z);
const auto up = Vector3::UpVector(m_viewAngles.x, m_viewAngles.y, m_viewAngles.z);
return Matrix::TranslationMatrix(-m_origin) * Matrix::OrientationMatrix(forward, right, up);
return Mat<4, 4>::TranslationMat(-m_origin) * Mat<4, 4>::OrientationMat(forward, right, up);
}
std::expected<Vector2, Error> Camera::WorldToScreen(const Vector3 &worldPosition) const
{
const auto posVecAsMatrix = Matrix({{worldPosition.x, worldPosition.y, worldPosition.z, 1.f}});
const auto posVecAsMatrix = Mat<1, 4>({{worldPosition.x, worldPosition.y, worldPosition.z, 1.f}});
const auto projectionMatrix = Matrix::ProjectionMatrix(m_fieldOfView, m_viewPort.AspectRatio(),
const auto projectionMatrix = Mat<4, 4>::ProjectionMat(m_fieldOfView, m_viewPort.AspectRatio(),
m_nearPlaneDistance, m_farPlaneDistance);
auto projected = posVecAsMatrix * (GetViewMatrix() * projectionMatrix);
Mat<1, 4> projected = posVecAsMatrix * (GetViewMatrix() * projectionMatrix);
if (projected.At(0, 3) <= 0.f)
return std::unexpected(Error::WORLD_POSITION_IS_BEHIND_CAMERA);
@@ -49,7 +49,7 @@ namespace omath::projection
projected.At(0, 1) < -1.f || projected.At(0, 1) > 1.f)
return std::unexpected(Error::WORLD_POSITION_IS_OUT_OF_SCREEN_BOUNDS);
projected *= Matrix::ToScreenMatrix(m_viewPort.m_width, m_viewPort.m_height);
projected *= Mat<4, 4>::ToScreenMat(m_viewPort.m_width, m_viewPort.m_height);
return Vector2{projected.At(0, 0), projected.At(0, 1)};
}

View File

@@ -7,6 +7,7 @@ include(GoogleTest)
add_executable(unit-tests
UnitTestPrediction.cpp
UnitTestMatrix.cpp
UnitTestMat.cpp
UnitTestAstar.cpp
UnitTestProjection.cpp
UnitTestVector3.cpp

245
tests/UnitTestMat.cpp Normal file
View File

@@ -0,0 +1,245 @@
// UnitTestMat.cpp
#include <gtest/gtest.h>
#include "omath/Mat.h"
#include "omath/Vector3.h"
using namespace omath;
class UnitTestMat : public ::testing::Test
{
protected:
Mat<2, 2> m1;
Mat<2, 2> m2;
void SetUp() override
{
m1 = Mat<2, 2>();
m2 = Mat<2, 2>{{1.0f, 2.0f}, {3.0f, 4.0f}};
}
};
// Test constructors
TEST_F(UnitTestMat, Constructor_Default)
{
Mat<3, 3> m;
EXPECT_EQ(m.RowCount(), 3);
EXPECT_EQ(m.ColumnsCount(), 3);
for (size_t i = 0; i < 3; ++i)
for (size_t j = 0; j < 3; ++j)
EXPECT_FLOAT_EQ(m.At(i, j), 0.0f);
}
TEST_F(UnitTestMat, Constructor_InitializerList)
{
constexpr Mat<2, 2> m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.RowCount(), 2);
EXPECT_EQ(m.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.At(0, 1), 2.0f);
EXPECT_FLOAT_EQ(m.At(1, 0), 3.0f);
EXPECT_FLOAT_EQ(m.At(1, 1), 4.0f);
}
TEST_F(UnitTestMat, Constructor_Copy)
{
Mat<2, 2> m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
}
TEST_F(UnitTestMat, Constructor_Move)
{
Mat<2, 2> m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
// Test matrix operations
TEST_F(UnitTestMat, Operator_Multiplication_Matrix)
{
Mat<2, 2> m3 = m2 * m2;
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.At(0, 1), 10.0f);
EXPECT_FLOAT_EQ(m3.At(1, 0), 15.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 22.0f);
}
TEST_F(UnitTestMat, Operator_Multiplication_Scalar)
{
Mat<2, 2> m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 8.0f);
}
TEST_F(UnitTestMat, Operator_Division_Scalar)
{
Mat<2, 2> m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMat, Transpose)
{
Mat<2, 2> m3 = m2.Transpose();
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(0, 1), m2.At(1, 0));
EXPECT_FLOAT_EQ(m3.At(1, 0), m2.At(0, 1));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
}
TEST_F(UnitTestMat, Determinant)
{
const float det = m2.Determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMat, Sum)
{
const float sum = m2.Sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMat, Clear)
{
m2.Clear();
for (size_t i = 0; i < m2.RowCount(); ++i)
for (size_t j = 0; j < m2.ColumnsCount(); ++j)
EXPECT_FLOAT_EQ(m2.At(i, j), 0.0f);
}
TEST_F(UnitTestMat, ToString)
{
const std::string str = m2.ToString();
EXPECT_FALSE(str.empty());
EXPECT_EQ(str, "1 2\n3 4\n");
}
// Test assignment operators
TEST_F(UnitTestMat, AssignmentOperator_Copy)
{
Mat<2, 2> m3;
m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
}
TEST_F(UnitTestMat, AssignmentOperator_Move)
{
Mat<2, 2> m3;
m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
// Test static methods
TEST_F(UnitTestMat, StaticMethod_ToScreenMat)
{
Mat<4, 4> screenMat = Mat<4, 4>::ToScreenMat(800.0f, 600.0f);
EXPECT_FLOAT_EQ(screenMat.At(0, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(1, 1), -300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 1), 300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 3), 1.0f);
}
// Test static method: TranslationMat
TEST_F(UnitTestMat, StaticMethod_TranslationMat)
{
Vector3 diff{10.0f, 20.0f, 30.0f};
Mat<4, 4> transMat = Mat<4, 4>::TranslationMat(diff);
EXPECT_FLOAT_EQ(transMat.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transMat.At(3, 0), diff.x);
EXPECT_FLOAT_EQ(transMat.At(3, 1), diff.y);
EXPECT_FLOAT_EQ(transMat.At(3, 2), diff.z);
EXPECT_FLOAT_EQ(transMat.At(3, 3), 1.0f);
}
// Test static method: OrientationMat
TEST_F(UnitTestMat, StaticMethod_OrientationMat)
{
constexpr Vector3 forward{0.0f, 0.0f, 1.0f};
constexpr Vector3 right{1.0f, 0.0f, 0.0f};
constexpr Vector3 up{0.0f, 1.0f, 0.0f};
constexpr Mat<4, 4> orientMat = Mat<4, 4>::OrientationMat(forward, right, up);
EXPECT_FLOAT_EQ(orientMat.At(0, 0), right.x);
EXPECT_FLOAT_EQ(orientMat.At(0, 1), up.x);
EXPECT_FLOAT_EQ(orientMat.At(0, 2), forward.x);
EXPECT_FLOAT_EQ(orientMat.At(1, 0), right.y);
EXPECT_FLOAT_EQ(orientMat.At(1, 1), up.y);
EXPECT_FLOAT_EQ(orientMat.At(1, 2), forward.y);
EXPECT_FLOAT_EQ(orientMat.At(2, 0), right.z);
EXPECT_FLOAT_EQ(orientMat.At(2, 1), up.z);
EXPECT_FLOAT_EQ(orientMat.At(2, 2), forward.z);
}
// Test static method: ProjectionMat
TEST_F(UnitTestMat, StaticMethod_ProjectionMat)
{
constexpr float fieldOfView = 45.0f;
constexpr float aspectRatio = 1.33f;
constexpr float near = 0.1f;
constexpr float far = 100.0f;
const Mat<4, 4> projMat = Mat<4, 4>::ProjectionMat(fieldOfView, aspectRatio, near, far);
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
EXPECT_FLOAT_EQ(projMat.At(0, 0), 1.f / (aspectRatio * fovHalfTan));
EXPECT_FLOAT_EQ(projMat.At(1, 1), 1.f / fovHalfTan);
EXPECT_FLOAT_EQ(projMat.At(2, 2), (far + near) / (far - near));
EXPECT_FLOAT_EQ(projMat.At(2, 3), (2.f * near * far) / (far - near));
EXPECT_FLOAT_EQ(projMat.At(3, 2), -1.f);
}
// Test exception handling in At() method
TEST_F(UnitTestMat, Method_At_OutOfRange)
{
EXPECT_THROW(std::ignore = m2.At(2, 0), std::out_of_range);
EXPECT_THROW(std::ignore = m2.At(0, 2), std::out_of_range);
}
// Test Determinant for 3x3 matrix
TEST(UnitTestMatStandalone, Determinant_3x3)
{
constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.Determinant();
EXPECT_FLOAT_EQ(det, -306.0f);
}
// Test Minor for 3x3 matrix
TEST(UnitTestMatStandalone, Minor_3x3)
{
constexpr Mat<3, 3> m{{3, 0, 2}, {2, 0, -2}, {0, 1, 1}};
auto minor = m.Minor(0, 0);
EXPECT_EQ(minor.RowCount(), 2);
EXPECT_EQ(minor.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(minor.At(0, 0), 0.0f);
EXPECT_FLOAT_EQ(minor.At(0, 1), -2.0f);
EXPECT_FLOAT_EQ(minor.At(1, 0), 1.0f);
EXPECT_FLOAT_EQ(minor.At(1, 1), 1.0f);
}
// Test Transpose for non-square matrix
TEST(UnitTestMatStandalone, Transpose_NonSquare)
{
constexpr Mat<2, 3> m{{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}};
auto transposed = m.Transpose();
EXPECT_EQ(transposed.RowCount(), 3);
EXPECT_EQ(transposed.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(transposed.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 0), 2.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 0), 3.0f);
EXPECT_FLOAT_EQ(transposed.At(0, 1), 4.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 1), 5.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 1), 6.0f);
}