mirror of
https://github.com/orange-cpp/omath.git
synced 2026-02-13 07:03:25 +00:00
improved code style
This commit is contained in:
@@ -38,14 +38,14 @@ static void expect_matrix_near(const MatT& a, const MatT& b, float eps = 1e-5f)
|
||||
// Generic tests for PredEngineTrait behaviour across engines
|
||||
TEST(TraitTests, Frostbite_Pred_And_Mesh_And_Camera)
|
||||
{
|
||||
namespace E = omath::frostbite_engine;
|
||||
namespace e = omath::frostbite_engine;
|
||||
|
||||
projectile_prediction::Projectile p;
|
||||
p.m_origin = {0.f, 0.f, 0.f};
|
||||
p.m_launch_speed = 10.f;
|
||||
p.m_gravity_scale = 1.f;
|
||||
|
||||
const auto pos = E::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
const auto pos = e::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
EXPECT_NEAR(pos.x, 0.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.z, 10.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.y, -9.81f * 0.5f, 1e-4f);
|
||||
@@ -54,57 +54,57 @@ TEST(TraitTests, Frostbite_Pred_And_Mesh_And_Camera)
|
||||
t.m_origin = {0.f, 5.f, 0.f};
|
||||
t.m_velocity = {2.f, 0.f, 0.f};
|
||||
t.m_is_airborne = true;
|
||||
const auto pred = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred.x, 4.f, 1e-6f);
|
||||
EXPECT_NEAR(pred.y, 5.f - 9.81f * (2.f * 2.f) * 0.5f, 1e-6f);
|
||||
|
||||
// Also test non-airborne path (no gravity applied)
|
||||
t.m_is_airborne = false;
|
||||
const auto pred_ground = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred_ground = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred_ground.x, 4.f, 1e-6f);
|
||||
EXPECT_NEAR(pred_ground.y, 5.f, 1e-6f);
|
||||
|
||||
EXPECT_NEAR(E::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(E::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
|
||||
std::optional<float> pitch = 45.f;
|
||||
auto vp = E::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
auto vp = e::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
EXPECT_NEAR(vp.y, 0.f + 10.f * std::tan(angles::degrees_to_radians(45.f)), 1e-6f);
|
||||
|
||||
// Direct angles
|
||||
Vector3<float> origin{0.f, 0.f, 0.f};
|
||||
Vector3<float> view_to{0.f, 1.f, 1.f};
|
||||
const auto pitch_calc = E::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto pitch_calc = e::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto dir = (view_to - origin).normalized();
|
||||
EXPECT_NEAR(pitch_calc, angles::radians_to_degrees(std::asin(dir.y)), 1e-3f);
|
||||
|
||||
const auto yaw_calc = E::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto yaw_calc = e::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
EXPECT_NEAR(yaw_calc, angles::radians_to_degrees(std::atan2(dir.x, dir.z)), 1e-3f);
|
||||
|
||||
// MeshTrait simply forwards to rotation_matrix; ensure it compiles and returns something
|
||||
E::ViewAngles va;
|
||||
const auto m1 = E::MeshTrait::rotation_matrix(va);
|
||||
const auto m2 = E::rotation_matrix(va);
|
||||
e::ViewAngles va;
|
||||
const auto m1 = e::MeshTrait::rotation_matrix(va);
|
||||
const auto m2 = e::rotation_matrix(va);
|
||||
expect_matrix_near(m1, m2);
|
||||
|
||||
// CameraTrait look at should be callable
|
||||
const auto angles = E::CameraTrait::calc_look_at_angle({0, 0, 0}, {0, 1, 1});
|
||||
const auto angles = e::CameraTrait::calc_look_at_angle({0, 0, 0}, {0, 1, 1});
|
||||
(void)angles;
|
||||
const auto proj = E::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = E::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
const auto proj = e::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = e::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
expect_matrix_near(proj, expected);
|
||||
}
|
||||
|
||||
TEST(TraitTests, IW_Pred_And_Mesh_And_Camera)
|
||||
{
|
||||
namespace E = omath::iw_engine;
|
||||
namespace e = omath::iw_engine;
|
||||
|
||||
projectile_prediction::Projectile p;
|
||||
p.m_origin = {0.f, 0.f, 0.f};
|
||||
p.m_launch_speed = 10.f;
|
||||
p.m_gravity_scale = 1.f;
|
||||
|
||||
const auto pos = E::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
const auto pos = e::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
EXPECT_NEAR(pos.x, 10.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.z, -9.81f * 0.5f, 1e-4f);
|
||||
|
||||
@@ -112,50 +112,50 @@ TEST(TraitTests, IW_Pred_And_Mesh_And_Camera)
|
||||
t.m_origin = {0.f, 0.f, 5.f};
|
||||
t.m_velocity = {0.f, 0.f, 2.f};
|
||||
t.m_is_airborne = true;
|
||||
const auto pred = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
// predicted = origin + velocity * t -> z = 5 + 2*2 = 9; then gravity applied
|
||||
EXPECT_NEAR(pred.z, 9.f - 9.81f * (2.f * 2.f) * 0.5f, 1e-6f);
|
||||
|
||||
EXPECT_NEAR(E::PredEngineTrait::calc_vector_2d_distance({3.f, 4.f, 0.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(E::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 3.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::calc_vector_2d_distance({3.f, 4.f, 0.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 3.f, 1e-6f);
|
||||
|
||||
std::optional<float> pitch = 45.f;
|
||||
auto vp = E::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
auto vp = e::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
EXPECT_NEAR(vp.z, 0.f + 10.f * std::tan(angles::degrees_to_radians(45.f)), 1e-6f);
|
||||
|
||||
Vector3<float> origin{0.f, 0.f, 0.f};
|
||||
Vector3<float> view_to{1.f, 1.f, 1.f};
|
||||
const auto pitch_calc = E::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto pitch_calc = e::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto dist = origin.distance_to(view_to);
|
||||
EXPECT_NEAR(pitch_calc, angles::radians_to_degrees(std::asin((view_to.z - origin.z) / dist)), 1e-3f);
|
||||
|
||||
const auto yaw_calc = E::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto yaw_calc = e::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto delta = view_to - origin;
|
||||
EXPECT_NEAR(yaw_calc, angles::radians_to_degrees(std::atan2(delta.y, delta.x)), 1e-3f);
|
||||
|
||||
E::ViewAngles va;
|
||||
expect_matrix_near(E::MeshTrait::rotation_matrix(va), E::rotation_matrix(va));
|
||||
e::ViewAngles va;
|
||||
expect_matrix_near(e::MeshTrait::rotation_matrix(va), e::rotation_matrix(va));
|
||||
|
||||
const auto proj = E::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(45.f), {1920.f, 1080.f}, 0.1f, 1000.f);
|
||||
const auto expected = E::calc_perspective_projection_matrix(45.f, 1920.f / 1080.f, 0.1f, 1000.f);
|
||||
const auto proj = e::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(45.f), {1920.f, 1080.f}, 0.1f, 1000.f);
|
||||
const auto expected = e::calc_perspective_projection_matrix(45.f, 1920.f / 1080.f, 0.1f, 1000.f);
|
||||
expect_matrix_near(proj, expected);
|
||||
|
||||
// non-airborne
|
||||
t.m_is_airborne = false;
|
||||
const auto pred_ground_iw = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred_ground_iw = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred_ground_iw.z, 9.f, 1e-6f);
|
||||
}
|
||||
|
||||
TEST(TraitTests, OpenGL_Pred_And_Mesh_And_Camera)
|
||||
{
|
||||
namespace E = omath::opengl_engine;
|
||||
namespace e = omath::opengl_engine;
|
||||
|
||||
projectile_prediction::Projectile p;
|
||||
p.m_origin = {0.f, 0.f, 0.f};
|
||||
p.m_launch_speed = 10.f;
|
||||
p.m_gravity_scale = 1.f;
|
||||
|
||||
const auto pos = E::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
const auto pos = e::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
EXPECT_NEAR(pos.z, -10.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.y, -9.81f * 0.5f, 1e-4f);
|
||||
|
||||
@@ -163,49 +163,49 @@ TEST(TraitTests, OpenGL_Pred_And_Mesh_And_Camera)
|
||||
t.m_origin = {0.f, 5.f, 0.f};
|
||||
t.m_velocity = {2.f, 0.f, 0.f};
|
||||
t.m_is_airborne = true;
|
||||
const auto pred = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred.x, 4.f, 1e-6f);
|
||||
EXPECT_NEAR(pred.y, 5.f - 9.81f * (2.f * 2.f) * 0.5f, 1e-6f);
|
||||
|
||||
EXPECT_NEAR(E::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(E::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
|
||||
std::optional<float> pitch = 45.f;
|
||||
auto vp = E::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
auto vp = e::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
EXPECT_NEAR(vp.y, 0.f + 10.f * std::tan(angles::degrees_to_radians(45.f)), 1e-6f);
|
||||
|
||||
Vector3<float> origin{0.f, 0.f, 0.f};
|
||||
Vector3<float> view_to{0.f, 1.f, 1.f};
|
||||
const auto pitch_calc = E::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto pitch_calc = e::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto dir = (view_to - origin).normalized();
|
||||
EXPECT_NEAR(pitch_calc, angles::radians_to_degrees(std::asin(dir.y)), 1e-3f);
|
||||
|
||||
const auto yaw_calc = E::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto yaw_calc = e::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
EXPECT_NEAR(yaw_calc, angles::radians_to_degrees(-std::atan2(dir.x, -dir.z)), 1e-3f);
|
||||
|
||||
E::ViewAngles va;
|
||||
expect_matrix_near(E::MeshTrait::rotation_matrix(va), E::rotation_matrix(va));
|
||||
e::ViewAngles va;
|
||||
expect_matrix_near(e::MeshTrait::rotation_matrix(va), e::rotation_matrix(va));
|
||||
|
||||
const auto proj = E::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = E::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
const auto proj = e::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = e::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
expect_matrix_near(proj, expected);
|
||||
|
||||
// non-airborne
|
||||
t.m_is_airborne = false;
|
||||
const auto pred_ground_gl = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred_ground_gl = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred_ground_gl.x, 4.f, 1e-6f);
|
||||
}
|
||||
|
||||
TEST(TraitTests, Unity_Pred_And_Mesh_And_Camera)
|
||||
{
|
||||
namespace E = omath::unity_engine;
|
||||
namespace e = omath::unity_engine;
|
||||
|
||||
projectile_prediction::Projectile p;
|
||||
p.m_origin = {0.f, 0.f, 0.f};
|
||||
p.m_launch_speed = 10.f;
|
||||
p.m_gravity_scale = 1.f;
|
||||
|
||||
const auto pos = E::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
const auto pos = e::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
EXPECT_NEAR(pos.z, 10.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.y, -9.81f * 0.5f, 1e-4f);
|
||||
|
||||
@@ -213,49 +213,49 @@ TEST(TraitTests, Unity_Pred_And_Mesh_And_Camera)
|
||||
t.m_origin = {0.f, 5.f, 0.f};
|
||||
t.m_velocity = {2.f, 0.f, 0.f};
|
||||
t.m_is_airborne = true;
|
||||
const auto pred = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred.x, 4.f, 1e-6f);
|
||||
EXPECT_NEAR(pred.y, 5.f - 9.81f * (2.f * 2.f) * 0.5f, 1e-6f);
|
||||
|
||||
EXPECT_NEAR(E::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(E::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
|
||||
std::optional<float> pitch = 45.f;
|
||||
auto vp = E::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
auto vp = e::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
EXPECT_NEAR(vp.y, 0.f + 10.f * std::tan(angles::degrees_to_radians(45.f)), 1e-6f);
|
||||
|
||||
Vector3<float> origin{0.f, 0.f, 0.f};
|
||||
Vector3<float> view_to{0.f, 1.f, 1.f};
|
||||
const auto pitch_calc = E::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto pitch_calc = e::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto dir = (view_to - origin).normalized();
|
||||
EXPECT_NEAR(pitch_calc, angles::radians_to_degrees(std::asin(dir.y)), 1e-3f);
|
||||
|
||||
const auto yaw_calc = E::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto yaw_calc = e::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
EXPECT_NEAR(yaw_calc, angles::radians_to_degrees(std::atan2(dir.x, dir.z)), 1e-3f);
|
||||
|
||||
E::ViewAngles va;
|
||||
expect_matrix_near(E::MeshTrait::rotation_matrix(va), E::rotation_matrix(va));
|
||||
e::ViewAngles va;
|
||||
expect_matrix_near(e::MeshTrait::rotation_matrix(va), e::rotation_matrix(va));
|
||||
|
||||
const auto proj = E::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = E::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
const auto proj = e::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = e::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
expect_matrix_near(proj, expected);
|
||||
|
||||
// non-airborne
|
||||
t.m_is_airborne = false;
|
||||
const auto pred_ground_unity = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred_ground_unity = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred_ground_unity.x, 4.f, 1e-6f);
|
||||
}
|
||||
|
||||
TEST(TraitTests, Unreal_Pred_And_Mesh_And_Camera)
|
||||
{
|
||||
namespace E = omath::unreal_engine;
|
||||
namespace e = omath::unreal_engine;
|
||||
|
||||
projectile_prediction::Projectile p;
|
||||
p.m_origin = {0.f, 0.f, 0.f};
|
||||
p.m_launch_speed = 10.f;
|
||||
p.m_gravity_scale = 1.f;
|
||||
|
||||
const auto pos = E::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
const auto pos = e::PredEngineTrait::predict_projectile_position(p, 0.f, 0.f, 1.f, 9.81f);
|
||||
EXPECT_NEAR(pos.x, 10.f, 1e-4f);
|
||||
EXPECT_NEAR(pos.y, -9.81f * 0.5f, 1e-4f);
|
||||
|
||||
@@ -263,35 +263,35 @@ TEST(TraitTests, Unreal_Pred_And_Mesh_And_Camera)
|
||||
t.m_origin = {0.f, 5.f, 0.f};
|
||||
t.m_velocity = {2.f, 0.f, 0.f};
|
||||
t.m_is_airborne = true;
|
||||
const auto pred = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred.x, 4.f, 1e-6f);
|
||||
EXPECT_NEAR(pred.y, 5.f - 9.81f * (2.f * 2.f) * 0.5f, 1e-6f);
|
||||
|
||||
EXPECT_NEAR(E::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(E::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::calc_vector_2d_distance({3.f, 0.f, 4.f}), 5.f, 1e-6f);
|
||||
EXPECT_NEAR(e::PredEngineTrait::get_vector_height_coordinate({1.f, 2.5f, 3.f}), 2.5f, 1e-6f);
|
||||
|
||||
std::optional<float> pitch = 45.f;
|
||||
auto vp = E::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
auto vp = e::PredEngineTrait::calc_viewpoint_from_angles(p, {10.f, 0.f, 0.f}, pitch);
|
||||
EXPECT_NEAR(vp.z, 0.f + 10.f * std::tan(angles::degrees_to_radians(45.f)), 1e-6f);
|
||||
|
||||
Vector3<float> origin{0.f, 0.f, 0.f};
|
||||
Vector3<float> view_to{1.f, 1.f, 1.f};
|
||||
const auto pitch_calc = E::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto pitch_calc = e::PredEngineTrait::calc_direct_pitch_angle(origin, view_to);
|
||||
const auto dir = (view_to - origin).normalized();
|
||||
EXPECT_NEAR(pitch_calc, angles::radians_to_degrees(std::asin(dir.z)), 1e-3f);
|
||||
|
||||
const auto yaw_calc = E::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
const auto yaw_calc = e::PredEngineTrait::calc_direct_yaw_angle(origin, view_to);
|
||||
EXPECT_NEAR(yaw_calc, angles::radians_to_degrees(std::atan2(dir.y, dir.x)), 1e-3f);
|
||||
|
||||
E::ViewAngles va;
|
||||
expect_matrix_near(E::MeshTrait::rotation_matrix(va), E::rotation_matrix(va));
|
||||
e::ViewAngles va;
|
||||
expect_matrix_near(e::MeshTrait::rotation_matrix(va), e::rotation_matrix(va));
|
||||
|
||||
const auto proj = E::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = E::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
const auto proj = e::CameraTrait::calc_projection_matrix(projection::FieldOfView::from_degrees(60.f), {1280.f, 720.f}, 0.1f, 1000.f);
|
||||
const auto expected = e::calc_perspective_projection_matrix(60.f, 1280.f / 720.f, 0.1f, 1000.f);
|
||||
expect_matrix_near(proj, expected);
|
||||
|
||||
// non-airborne
|
||||
t.m_is_airborne = false;
|
||||
const auto pred_ground_unreal = E::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
const auto pred_ground_unreal = e::PredEngineTrait::predict_target_position(t, 2.f, 9.81f);
|
||||
EXPECT_NEAR(pred_ground_unreal.x, 4.f, 1e-6f);
|
||||
}
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
// Extra collision tests: Simplex, MeshCollider, EPA
|
||||
#include <gtest/gtest.h>
|
||||
#include <omath/collision/simplex.hpp>
|
||||
#include <omath/collision/mesh_collider.hpp>
|
||||
#include <omath/collision/epa_algorithm.hpp>
|
||||
#include <omath/collision/mesh_collider.hpp>
|
||||
#include <omath/collision/simplex.hpp>
|
||||
#include <omath/engines/source_engine/collider.hpp>
|
||||
|
||||
using namespace omath;
|
||||
@@ -34,8 +34,8 @@ TEST(SimplexTest, HandleLineCollinearWithXAxis)
|
||||
TEST(CollisionExtra, SimplexLineHandle)
|
||||
{
|
||||
Simplex<Vector3<float>> s;
|
||||
s = { Vector3<float>{1.f,0.f,0.f}, Vector3<float>{2.f,0.f,0.f} };
|
||||
Vector3<float> dir{0,0,0};
|
||||
s = {Vector3<float>{1.f, 0.f, 0.f}, Vector3<float>{2.f, 0.f, 0.f}};
|
||||
Vector3<float> dir{0, 0, 0};
|
||||
EXPECT_FALSE(s.handle(dir));
|
||||
// direction should not be zero
|
||||
EXPECT_GT(dir.length_sqr(), 0.0f);
|
||||
@@ -44,8 +44,8 @@ TEST(CollisionExtra, SimplexLineHandle)
|
||||
TEST(CollisionExtra, SimplexTriangleHandle)
|
||||
{
|
||||
Simplex<Vector3<float>> s;
|
||||
s = { Vector3<float>{1.f,0.f,0.f}, Vector3<float>{0.f,1.f,0.f}, Vector3<float>{0.f,0.f,1.f} };
|
||||
Vector3<float> dir{0,0,0};
|
||||
s = {Vector3<float>{1.f, 0.f, 0.f}, Vector3<float>{0.f, 1.f, 0.f}, Vector3<float>{0.f, 0.f, 1.f}};
|
||||
Vector3<float> dir{0, 0, 0};
|
||||
EXPECT_FALSE(s.handle(dir));
|
||||
EXPECT_GT(dir.length_sqr(), 0.0f);
|
||||
}
|
||||
@@ -54,8 +54,9 @@ TEST(CollisionExtra, SimplexTetrahedronInside)
|
||||
{
|
||||
Simplex<Vector3<float>> s;
|
||||
// tetra that surrounds origin roughly
|
||||
s = { Vector3<float>{1.f,0.f,0.f}, Vector3<float>{0.f,1.f,0.f}, Vector3<float>{0.f,0.f,1.f}, Vector3<float>{-1.f,-1.f,-1.f} };
|
||||
Vector3<float> dir{0,0,0};
|
||||
s = {Vector3<float>{1.f, 0.f, 0.f}, Vector3<float>{0.f, 1.f, 0.f}, Vector3<float>{0.f, 0.f, 1.f},
|
||||
Vector3<float>{-1.f, -1.f, -1.f}};
|
||||
Vector3<float> dir{0, 0, 0};
|
||||
// if origin inside, handle returns true
|
||||
const bool inside = s.handle(dir);
|
||||
EXPECT_TRUE(inside);
|
||||
@@ -63,44 +64,38 @@ TEST(CollisionExtra, SimplexTetrahedronInside)
|
||||
|
||||
TEST(CollisionExtra, MeshColliderOriginAndFurthest)
|
||||
{
|
||||
omath::source_engine::Mesh mesh = {
|
||||
std::vector<omath::primitives::Vertex<>>{
|
||||
{ { 1.f, 1.f, 1.f }, {}, {} },
|
||||
{ {-1.f, -1.f, -1.f }, {}, {} }
|
||||
},
|
||||
{}
|
||||
};
|
||||
source_engine::Mesh mesh = {
|
||||
std::vector<primitives::Vertex<>>{{{1.f, 1.f, 1.f}, {}, {}}, {{-1.f, -1.f, -1.f}, {}, {}}}, {}};
|
||||
mesh.set_origin({0, 2, 0});
|
||||
omath::source_engine::MeshCollider collider(mesh);
|
||||
source_engine::MeshCollider collider(mesh);
|
||||
|
||||
EXPECT_EQ(collider.get_origin(), omath::Vector3<float>(0,2,0));
|
||||
collider.set_origin({1,2,3});
|
||||
EXPECT_EQ(collider.get_origin(), omath::Vector3<float>(1,2,3));
|
||||
EXPECT_EQ(collider.get_origin(), omath::Vector3<float>(0, 2, 0));
|
||||
collider.set_origin({1, 2, 3});
|
||||
EXPECT_EQ(collider.get_origin(), omath::Vector3<float>(1, 2, 3));
|
||||
|
||||
const auto v = collider.find_abs_furthest_vertex_position({1.f,0.f,0.f});
|
||||
const auto v = collider.find_abs_furthest_vertex_position({1.f, 0.f, 0.f});
|
||||
// the original vertex at (1,1,1) translated by origin (1,2,3) becomes (2,3,4)
|
||||
EXPECT_EQ(v, omath::Vector3<float>(2.f,3.f,4.f));
|
||||
EXPECT_EQ(v, omath::Vector3<float>(2.f, 3.f, 4.f));
|
||||
}
|
||||
|
||||
TEST(CollisionExtra, EPAConvergesOnSimpleCase)
|
||||
{
|
||||
// Build two simple colliders using simple meshes that overlap
|
||||
omath::source_engine::Mesh meshA = {
|
||||
std::vector<omath::primitives::Vertex<>>{{ {0.f,0.f,0.f}, {}, {} }, { {1.f,0.f,0.f}, {}, {} } },
|
||||
{}
|
||||
};
|
||||
omath::source_engine::Mesh mesh_b = meshA;
|
||||
source_engine::Mesh meshA = {
|
||||
std::vector<primitives::Vertex<>>{{{0.f, 0.f, 0.f}, {}, {}}, {{1.f, 0.f, 0.f}, {}, {}}}, {}};
|
||||
source_engine::Mesh mesh_b = meshA;
|
||||
mesh_b.set_origin({0.5f, 0.f, 0.f}); // translate to overlap
|
||||
|
||||
omath::source_engine::MeshCollider a(meshA);
|
||||
omath::source_engine::MeshCollider b(mesh_b);
|
||||
source_engine::MeshCollider a(meshA);
|
||||
source_engine::MeshCollider b(mesh_b);
|
||||
|
||||
// Create a simplex that approximately contains the origin in Minkowski space
|
||||
Simplex<omath::Vector3<float>> simplex;
|
||||
simplex = { omath::Vector3<float>{0.5f,0.f,0.f}, omath::Vector3<float>{-0.5f,0.f,0.f}, omath::Vector3<float>{0.f,0.5f,0.f}, omath::Vector3<float>{0.f,-0.5f,0.f} };
|
||||
Simplex<Vector3<float>> simplex;
|
||||
simplex = {omath::Vector3<float>{0.5f, 0.f, 0.f}, omath::Vector3<float>{-0.5f, 0.f, 0.f},
|
||||
omath::Vector3<float>{0.f, 0.5f, 0.f}, omath::Vector3<float>{0.f, -0.5f, 0.f}};
|
||||
|
||||
auto pool = std::pmr::monotonic_buffer_resource(1024);
|
||||
auto res = Epa<omath::source_engine::MeshCollider>::solve(a, b, simplex, {}, pool);
|
||||
auto res = Epa<source_engine::MeshCollider>::solve(a, b, simplex, {}, pool);
|
||||
// EPA may or may not converge depending on numerics; ensure it returns optionally
|
||||
// but if it does, fields should be finite
|
||||
if (res.has_value())
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
|
||||
using Mesh = omath::source_engine::Mesh;
|
||||
using Collider = omath::source_engine::MeshCollider;
|
||||
using GJK = omath::collision::GjkAlgorithm<Collider>;
|
||||
using Gjk = omath::collision::GjkAlgorithm<Collider>;
|
||||
using EPA = omath::collision::Epa<Collider>;
|
||||
|
||||
TEST(UnitTestEpa, TestCollisionTrue)
|
||||
@@ -37,15 +37,15 @@ TEST(UnitTestEpa, TestCollisionTrue)
|
||||
Collider A(a), B(b);
|
||||
|
||||
// GJK
|
||||
auto gjk = GJK::is_collide_with_simplex_info(A, B);
|
||||
ASSERT_TRUE(gjk.hit) << "GJK should report collision";
|
||||
auto [hit, simplex] = Gjk::is_collide_with_simplex_info(A, B);
|
||||
ASSERT_TRUE(hit) << "GJK should report collision";
|
||||
|
||||
// EPA
|
||||
EPA::Params params;
|
||||
auto pool = std::make_shared<std::pmr::monotonic_buffer_resource>(1024);
|
||||
params.max_iterations = 64;
|
||||
params.tolerance = 1e-4f;
|
||||
auto epa = EPA::solve(A, B, gjk.simplex, params, *pool);
|
||||
auto epa = EPA::solve(A, B, simplex, params, *pool);
|
||||
ASSERT_TRUE(epa.has_value()) << "EPA should converge";
|
||||
|
||||
// Normal is unit
|
||||
@@ -70,8 +70,8 @@ TEST(UnitTestEpa, TestCollisionTrue)
|
||||
|
||||
Collider B_plus(b_plus), B_minus(b_minus);
|
||||
|
||||
const bool sep_plus = !GJK::is_collide_with_simplex_info(A, B_plus).hit;
|
||||
const bool sep_minus = !GJK::is_collide_with_simplex_info(A, B_minus).hit;
|
||||
const bool sep_plus = !Gjk::is_collide_with_simplex_info(A, B_plus).hit;
|
||||
const bool sep_minus = !Gjk::is_collide_with_simplex_info(A, B_minus).hit;
|
||||
|
||||
// Exactly one direction should separate
|
||||
EXPECT_NE(sep_plus, sep_minus) << "Exactly one of ±penetration must separate";
|
||||
@@ -81,12 +81,12 @@ TEST(UnitTestEpa, TestCollisionTrue)
|
||||
|
||||
Mesh b_resolved = b;
|
||||
b_resolved.set_origin(b_resolved.get_origin() + resolve);
|
||||
EXPECT_FALSE(GJK::is_collide(A, Collider(b_resolved))) << "Resolved position should be non-colliding";
|
||||
EXPECT_FALSE(Gjk::is_collide(A, Collider(b_resolved))) << "Resolved position should be non-colliding";
|
||||
|
||||
// Moving the other way should still collide
|
||||
Mesh b_wrong = b;
|
||||
b_wrong.set_origin(b_wrong.get_origin() - resolve);
|
||||
EXPECT_TRUE(GJK::is_collide(A, Collider(b_wrong)));
|
||||
EXPECT_TRUE(Gjk::is_collide(A, Collider(b_wrong)));
|
||||
}
|
||||
TEST(UnitTestEpa, TestCollisionTrue2)
|
||||
{
|
||||
@@ -112,7 +112,7 @@ TEST(UnitTestEpa, TestCollisionTrue2)
|
||||
Collider A(a), B(b);
|
||||
|
||||
// --- GJK must detect collision and provide simplex ---
|
||||
auto gjk = GJK::is_collide_with_simplex_info(A, B);
|
||||
auto gjk = Gjk::is_collide_with_simplex_info(A, B);
|
||||
ASSERT_TRUE(gjk.hit) << "GJK should report collision for overlapping cubes";
|
||||
// --- EPA penetration ---
|
||||
EPA::Params params;
|
||||
@@ -139,11 +139,11 @@ TEST(UnitTestEpa, TestCollisionTrue2)
|
||||
// Apply once: B + pen must separate; the opposite must still collide
|
||||
Mesh b_resolved = b;
|
||||
b_resolved.set_origin(b_resolved.get_origin() + pen * margin);
|
||||
EXPECT_FALSE(GJK::is_collide(A, Collider(b_resolved))) << "Applying penetration should separate";
|
||||
EXPECT_FALSE(Gjk::is_collide(A, Collider(b_resolved))) << "Applying penetration should separate";
|
||||
|
||||
Mesh b_wrong = b;
|
||||
b_wrong.set_origin(b_wrong.get_origin() - pen * margin);
|
||||
EXPECT_TRUE(GJK::is_collide(A, Collider(b_wrong))) << "Opposite direction should still intersect";
|
||||
EXPECT_TRUE(Gjk::is_collide(A, Collider(b_wrong))) << "Opposite direction should still intersect";
|
||||
|
||||
// Some book-keeping sanity
|
||||
EXPECT_GT(epa->iterations, 0);
|
||||
|
||||
@@ -32,10 +32,8 @@ TEST(EpaInternal, SolveHandlesSmallPolytope)
|
||||
params.max_iterations = 16;
|
||||
params.tolerance = 1e-6f;
|
||||
|
||||
const auto result = EpaDummy::solve(a, b, s, params);
|
||||
|
||||
// Should either return a valid result or gracefully return nullopt
|
||||
if (result)
|
||||
if (const auto result = EpaDummy::solve(a, b, s, params))
|
||||
{
|
||||
EXPECT_TRUE(std::isfinite(result->depth));
|
||||
EXPECT_TRUE(std::isfinite(result->normal.x));
|
||||
|
||||
@@ -10,7 +10,8 @@ struct DegenerateCollider
|
||||
{
|
||||
using VectorType = Vector3f;
|
||||
// returns furthest point along dir
|
||||
VectorType find_abs_furthest_vertex_position(const VectorType& dir) const noexcept
|
||||
[[nodiscard]]
|
||||
static VectorType find_abs_furthest_vertex_position(const VectorType& dir) noexcept
|
||||
{
|
||||
// Always return points on a small circle in XY plane so some faces become degenerate
|
||||
if (dir.x > 0.5f) return {0.01f, 0.f, 0.f};
|
||||
|
||||
@@ -29,9 +29,8 @@ TEST(LineTracerExtra, HitOnEdge)
|
||||
{
|
||||
constexpr Triangle<Vector3<float>> tri({0,0,0},{1,0,0},{0,1,0});
|
||||
constexpr Ray ray{ {0.0f,0.0f,1.f}, {0.0f,0.0f,0.f}, false };
|
||||
const auto hit = LineTracer::get_ray_hit_point(ray, tri);
|
||||
// hitting exact vertex/edge may be considered miss; ensure function handles without crash
|
||||
if (hit != ray.end)
|
||||
if (const auto hit = LineTracer::get_ray_hit_point(ray, tri); hit != ray.end)
|
||||
{
|
||||
EXPECT_NEAR(hit.x, 0.0f, 1e-6f);
|
||||
EXPECT_NEAR(hit.y, 0.0f, 1e-6f);
|
||||
|
||||
Reference in New Issue
Block a user