// // Created by Orange on 1/6/2025. // #include "omath/linear_algebra/triangle.hpp" #include "omath/linear_algebra/vector3.hpp" #include // For std::sqrt, std::isinf, std::isnan #include using namespace omath; class UnitTestTriangle : public ::testing::Test { protected: // Define some Triangles to use in tests Triangle> t1; Triangle> t2; Triangle> t3; constexpr void SetUp() override { // Triangle with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) t1 = Triangle>( Vector3(0.0f, 0.0f, 0.0f), Vector3(1.0f, 0.0f, 0.0f), Vector3(0.0f, 1.0f, 0.0f) ); // Triangle with vertices (1, 2, 3), (4, 5, 6), (7, 8, 9) t2 = Triangle>( Vector3(1.0f, 2.0f, 3.0f), Vector3(4.0f, 5.0f, 6.0f), Vector3(7.0f, 8.0f, 9.0f) ); // An isosceles right triangle t3 = Triangle>( Vector3(0.0f, 0.0f, 0.0f), Vector3(2.0f, 0.0f, 0.0f), Vector3(0.0f, 2.0f, 0.0f) ); } }; // Test constructor and vertices TEST_F(UnitTestTriangle, Constructor) { constexpr Triangle> t( Vector3(1.0f, 2.0f, 3.0f), Vector3(4.0f, 5.0f, 6.0f), Vector3(7.0f, 8.0f, 9.0f) ); EXPECT_FLOAT_EQ(t.m_vertex1.x, 1.0f); EXPECT_FLOAT_EQ(t.m_vertex1.y, 2.0f); EXPECT_FLOAT_EQ(t.m_vertex1.z, 3.0f); EXPECT_FLOAT_EQ(t.m_vertex2.x, 4.0f); EXPECT_FLOAT_EQ(t.m_vertex2.y, 5.0f); EXPECT_FLOAT_EQ(t.m_vertex2.z, 6.0f); EXPECT_FLOAT_EQ(t.m_vertex3.x, 7.0f); EXPECT_FLOAT_EQ(t.m_vertex3.y, 8.0f); EXPECT_FLOAT_EQ(t.m_vertex3.z, 9.0f); } // Test CalculateNormal TEST_F(UnitTestTriangle, CalculateNormal) { // For t1, the normal should point in the +Z direction (0, 0, 1) or (0, 0, -1) const Vector3 normal_t1 = t1.calculate_normal(); // Check if it's normalized and pointed along Z (sign can differ, so use absolute check) EXPECT_NEAR(std::fabs(normal_t1.z), 1.0f, 1e-5f); EXPECT_NEAR(normal_t1.length(), 1.0f, 1e-5f); // For t3, we expect the normal to be along +Z as well const Vector3 normal_t3 = t3.calculate_normal(); EXPECT_NEAR(std::fabs(normal_t3.z), 1.0f, 1e-5f); } // Test side lengths TEST_F(UnitTestTriangle, SideLengths) { // For t1 side lengths EXPECT_FLOAT_EQ(t1.side_a_length(), std::sqrt(1.0f)); // distance between (0,0,0) and (1,0,0) EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(1.0f + 1.0f)); // distance between (4,5,6) & (7,8,9)... but we are testing t1, so let's be accurate: // Actually, for t1: vertex2=(1,0,0), vertex3=(0,1,0) // Dist between (0,1,0) and (1,0,0) = sqrt((1-0)^2 + (0-1)^2) = sqrt(1 + 1) = sqrt(2) EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(2.0f)); // For t3, side a = distance between vertex1=(0,0,0) and vertex2=(2,0,0), which is 2 // side b = distance between vertex3=(0,2,0) and vertex2=(2,0,0), which is sqrt(2^2 + (-2)^2)= sqrt(8)= 2.828... // We'll just check side a first: EXPECT_FLOAT_EQ(t3.side_a_length(), 2.0f); // Then side b: EXPECT_FLOAT_EQ(t3.side_b_length(), std::sqrt(8.0f)); } // Test side vectors TEST_F(UnitTestTriangle, SideVectors) { const Vector3 sideA_t1 = t1.side_a_vector(); // m_vertex1 - m_vertex2 EXPECT_FLOAT_EQ(sideA_t1.x, 0.0f - 1.0f); EXPECT_FLOAT_EQ(sideA_t1.y, 0.0f - 0.0f); EXPECT_FLOAT_EQ(sideA_t1.z, 0.0f - 0.0f); const Vector3 sideB_t1 = t1.side_b_vector(); // m_vertex3 - m_vertex2 EXPECT_FLOAT_EQ(sideB_t1.x, 0.0f - 1.0f); EXPECT_FLOAT_EQ(sideB_t1.y, 1.0f - 0.0f); EXPECT_FLOAT_EQ(sideB_t1.z, 0.0f - 0.0f); } TEST_F(UnitTestTriangle, IsRectangular) { EXPECT_TRUE(Triangle>({2,0,0}, {}, {0,2,0}).is_rectangular()); } // Test midpoint TEST_F(UnitTestTriangle, MidPoint) { // For t1, midpoint of (0,0,0), (1,0,0), (0,1,0) const Vector3 mid1 = t1.mid_point(); EXPECT_FLOAT_EQ(mid1.x, (0.0f + 1.0f + 0.0f) / 3.0f); EXPECT_FLOAT_EQ(mid1.y, (0.0f + 0.0f + 1.0f) / 3.0f); EXPECT_FLOAT_EQ(mid1.z, 0.0f); // For t2, midpoint of (1,2,3), (4,5,6), (7,8,9) const Vector3 mid2 = t2.mid_point(); EXPECT_FLOAT_EQ(mid2.x, (1.0f + 4.0f + 7.0f) / 3.0f); EXPECT_FLOAT_EQ(mid2.y, (2.0f + 5.0f + 8.0f) / 3.0f); EXPECT_FLOAT_EQ(mid2.z, (3.0f + 6.0f + 9.0f) / 3.0f); }