// UnitTestMat.cpp #include "omath/linear_algebra/mat.hpp" #include "omath/linear_algebra/vector3.hpp" #include using namespace omath; class UnitTestMat : public ::testing::Test { protected: Mat<2, 2> m1; Mat<2, 2> m2; void SetUp() override { m1 = Mat<2, 2>(); m2 = Mat<2, 2>{{1.0f, 2.0f}, {3.0f, 4.0f}}; } }; // Test constructors TEST_F(UnitTestMat, Constructor_Default) { Mat<3, 3> m; EXPECT_EQ(m.row_count(), 3); EXPECT_EQ(m.columns_count(), 3); for (size_t i = 0; i < 3; ++i) for (size_t j = 0; j < 3; ++j) EXPECT_FLOAT_EQ(m.at(i, j), 0.0f); } TEST_F(UnitTestMat, Constructor_InitializerList) { constexpr Mat<2, 2> m{{1.0f, 2.0f}, {3.0f, 4.0f}}; EXPECT_EQ(m.row_count(), 2); EXPECT_EQ(m.columns_count(), 2); EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f); EXPECT_FLOAT_EQ(m.at(0, 1), 2.0f); EXPECT_FLOAT_EQ(m.at(1, 0), 3.0f); EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f); } TEST_F(UnitTestMat, Operator_SquareBrackets) { EXPECT_EQ((m2[0, 0]), 1.0f); EXPECT_EQ((m2[0, 1]), 2.0f); EXPECT_EQ((m2[1, 0]), 3.0f); EXPECT_EQ((m2[1, 1]), 4.0f); } TEST_F(UnitTestMat, Constructor_Copy) { Mat<2, 2> m3 = m2; EXPECT_EQ(m3.row_count(), m2.row_count()); EXPECT_EQ(m3.columns_count(), m2.columns_count()); EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0)); EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1)); } TEST_F(UnitTestMat, Constructor_Move) { Mat<2, 2> m3 = std::move(m2); EXPECT_EQ(m3.row_count(), 2); EXPECT_EQ(m3.columns_count(), 2); EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f); EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f); // m2 is in a valid but unspecified state after move } // Test matrix operations TEST_F(UnitTestMat, Operator_Multiplication_Matrix) { Mat<2, 2> m3 = m2 * m2; EXPECT_EQ(m3.row_count(), 2); EXPECT_EQ(m3.columns_count(), 2); EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f); EXPECT_FLOAT_EQ(m3.at(0, 1), 10.0f); EXPECT_FLOAT_EQ(m3.at(1, 0), 15.0f); EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f); } TEST_F(UnitTestMat, Operator_Multiplication_Scalar) { Mat<2, 2> m3 = m2 * 2.0f; EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f); EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f); } TEST_F(UnitTestMat, Operator_Division_Scalar) { Mat<2, 2> m3 = m2 / 2.0f; EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f); EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f); } // Test matrix functions TEST_F(UnitTestMat, Transpose) { Mat<2, 2> m3 = m2.transposed(); EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0)); EXPECT_FLOAT_EQ(m3.at(0, 1), m2.at(1, 0)); EXPECT_FLOAT_EQ(m3.at(1, 0), m2.at(0, 1)); EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1)); } TEST_F(UnitTestMat, Determinant) { const float det = m2.determinant(); EXPECT_FLOAT_EQ(det, -2.0f); } TEST_F(UnitTestMat, Sum) { const float sum = m2.sum(); EXPECT_FLOAT_EQ(sum, 10.0f); } TEST_F(UnitTestMat, Clear) { m2.clear(); for (size_t i = 0; i < m2.row_count(); ++i) for (size_t j = 0; j < m2.columns_count(); ++j) EXPECT_FLOAT_EQ(m2.at(i, j), 0.0f); } TEST_F(UnitTestMat, ToString) { const std::string str = std::format("{}", m2); EXPECT_FALSE(str.empty()); EXPECT_EQ(str, "[[ 1.000, 2.000]\n [ 3.000, 4.000]]"); } // Test assignment operators TEST_F(UnitTestMat, AssignmentOperator_Copy) { Mat<2, 2> m3; m3 = m2; EXPECT_EQ(m3.row_count(), m2.row_count()); EXPECT_EQ(m3.columns_count(), m2.columns_count()); EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0)); } TEST_F(UnitTestMat, AssignmentOperator_Move) { Mat<2, 2> m3; m3 = std::move(m2); EXPECT_EQ(m3.row_count(), 2); EXPECT_EQ(m3.columns_count(), 2); EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f); EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f); // m2 is in a valid but unspecified state after move } // Test static methods TEST_F(UnitTestMat, StaticMethod_ToScreenMat) { Mat<4, 4> screenMat = Mat<4, 4>::to_screen_mat(800.0f, 600.0f); EXPECT_FLOAT_EQ(screenMat.at(0, 0), 400.0f); EXPECT_FLOAT_EQ(screenMat.at(1, 1), -300.0f); EXPECT_FLOAT_EQ(screenMat.at(3, 0), 400.0f); EXPECT_FLOAT_EQ(screenMat.at(3, 1), 300.0f); EXPECT_FLOAT_EQ(screenMat.at(3, 3), 1.0f); } // Test exception handling in At() method TEST_F(UnitTestMat, Method_At_OutOfRange) { #if !defined(NDEBUG) && defined(OMATH_SUPRESS_SAFETY_CHECKS) EXPECT_THROW(std::ignore = m2.at(2, 0), std::out_of_range); EXPECT_THROW(std::ignore = m2.at(0, 2), std::out_of_range); #endif } // Test Determinant for 3x3 matrix TEST(UnitTestMatStandalone, Determinant_3x3) { constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.determinant(); EXPECT_FLOAT_EQ(det, -306.0f); } // Test Minor for 3x3 matrix TEST(UnitTestMatStandalone, Strip_3x3) { constexpr Mat<3, 3> m{{3, 0, 2}, {2, 0, -2}, {0, 1, 1}}; auto minor = m.strip(0, 0); EXPECT_EQ(minor.row_count(), 2); EXPECT_EQ(minor.columns_count(), 2); EXPECT_FLOAT_EQ(minor.at(0, 0), 0.0f); EXPECT_FLOAT_EQ(minor.at(0, 1), -2.0f); EXPECT_FLOAT_EQ(minor.at(1, 0), 1.0f); EXPECT_FLOAT_EQ(minor.at(1, 1), 1.0f); } // Test Transpose for non-square matrix TEST(UnitTestMatStandalone, Transpose_NonSquare) { constexpr Mat<2, 3> m{{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}; auto transposed = m.transposed(); EXPECT_EQ(transposed.row_count(), 3); EXPECT_EQ(transposed.columns_count(), 2); EXPECT_FLOAT_EQ(transposed.at(0, 0), 1.0f); EXPECT_FLOAT_EQ(transposed.at(1, 0), 2.0f); EXPECT_FLOAT_EQ(transposed.at(2, 0), 3.0f); EXPECT_FLOAT_EQ(transposed.at(0, 1), 4.0f); EXPECT_FLOAT_EQ(transposed.at(1, 1), 5.0f); EXPECT_FLOAT_EQ(transposed.at(2, 1), 6.0f); } TEST(UnitTestMatStandalone, Enverse) { constexpr Mat<2, 2> m{{1.0f, 3.0f}, {2.0f, 5.0f}}; constexpr Mat<2,2> mv{{-5.0f, 3.0f}, {2.0f, -1.0f}}; EXPECT_EQ(mv, m.inverted()); } TEST(UnitTestMatStandalone, Equanity) { constexpr omath::Vector3 left_handed = {0, 2, 10}; constexpr omath::Vector3 right_handed = {0, 2, -10}; auto proj_left_handed = omath::mat_perspective_left_handed(90.f, 16.f / 9.f, 0.1, 1000); auto proj_right_handed = omath::mat_perspective_right_handed(90.f, 16.f / 9.f, 0.1, 1000); auto ndc_left_handed = proj_left_handed * omath::mat_column_from_vector(left_handed); auto ndc_right_handed = proj_right_handed * omath::mat_column_from_vector(right_handed); ndc_left_handed /= ndc_left_handed.at(3, 0); ndc_right_handed /= ndc_right_handed.at(3, 0); EXPECT_EQ(ndc_left_handed, ndc_right_handed); }