// main.cpp #define TINYGLTF_IMPLEMENTATION #define STB_IMAGE_IMPLEMENTATION #define STB_IMAGE_WRITE_IMPLEMENTATION #define TINYGLTF_NOEXCEPTION #define JSON_NOEXCEPTION #include #include #include #include #include // --- OpenGL / windowing --- #include // GLEW must come before GLFW #include #include // --- your math / engine stuff --- #include "omath/3d_primitives/mesh.hpp" #include "omath/collision/epa_algorithm.hpp" #include "omath/collision/gjk_algorithm.hpp" #include "omath/collision/line_tracer.hpp" #include "omath/collision/mesh_collider.hpp" #include "omath/engines/opengl_engine/camera.hpp" #include "omath/engines/opengl_engine/constants.hpp" #include "omath/engines/opengl_engine/mesh.hpp" #include "omath/linear_algebra/vector2.hpp" #include "omath/linear_algebra/vector3.hpp" using omath::Vector3; // ---------------- TYPE ALIASES ---------------- // Your 4x4 matrix type using Mat4x4 = omath::opengl_engine::Mat4X4; // Rotation angles for the Mesh using RotationAngles = omath::opengl_engine::ViewAngles; // Vertex: pos/normal = Vector3, uv = Vector2 using VertexType = omath::primitives::Vertex, omath::Vector2>; using MeshType = omath::opengl_engine::Mesh; using MyCamera = omath::opengl_engine::Camera; using Idx = Vector3; // ---------------- SHADERS (TEXTURED) ---------------- static const char* vertexShaderSource = R"( #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; layout (location = 2) in vec2 aUv; uniform mat4 uMVP; uniform mat4 uModel; out vec3 vNormal; out vec2 vUv; void main() { // world-space normal (assuming no non-uniform scale) vNormal = mat3(uModel) * aNormal; vUv = aUv; gl_Position = uMVP * uModel * vec4(aPos, 1.0); } )"; static const char* fragmentShaderSource = R"( #version 330 core in vec3 vNormal; in vec2 vUv; uniform sampler2D uTexture; out vec4 FragColor; void main() { vec3 baseColor = texture(uTexture, vUv).rgb; // simple directional light vec3 N = normalize(vNormal); vec3 L = normalize(vec3(0.3, 0.6, 0.7)); float diff = max(dot(N, L), 0.2); // some ambient floor FragColor = vec4(baseColor * diff, 1.0); } )"; // ---------------- GL helpers ---------------- GLuint compileShader(GLenum type, const char* src) { GLuint shader = glCreateShader(type); glShaderSource(shader, 1, &src, nullptr); glCompileShader(shader); GLint ok = GL_FALSE; glGetShaderiv(shader, GL_COMPILE_STATUS, &ok); if (!ok) { char log[1024]; glGetShaderInfoLog(shader, sizeof(log), nullptr, log); std::cerr << "Shader compile error: " << log << std::endl; } return shader; } GLuint createShaderProgram() { GLuint vs = compileShader(GL_VERTEX_SHADER, vertexShaderSource); GLuint fs = compileShader(GL_FRAGMENT_SHADER, fragmentShaderSource); GLuint prog = glCreateProgram(); glAttachShader(prog, vs); glAttachShader(prog, fs); glLinkProgram(prog); GLint ok = GL_FALSE; glGetProgramiv(prog, GL_LINK_STATUS, &ok); if (!ok) { char log[1024]; glGetProgramInfoLog(prog, sizeof(log), nullptr, log); std::cerr << "Program link error: " << log << std::endl; } glDeleteShader(vs); glDeleteShader(fs); return prog; } void framebuffer_size_callback(GLFWwindow* /*window*/, int w, int h) { glViewport(0, 0, w, h); } // ---------------- tinygltf helpers ---------------- static const unsigned char* get_accessor_data_ptr(const tinygltf::Model& model, const tinygltf::Accessor& accessor) { const tinygltf::BufferView& bufferView = model.bufferViews[accessor.bufferView]; const tinygltf::Buffer& buffer = model.buffers[bufferView.buffer]; return buffer.data.data() + bufferView.byteOffset + accessor.byteOffset; } static size_t get_accessor_stride(const tinygltf::Model& model, const tinygltf::Accessor& accessor) { const tinygltf::BufferView& bufferView = model.bufferViews[accessor.bufferView]; size_t stride = accessor.ByteStride(bufferView); if (stride == 0) { stride = tinygltf::GetComponentSizeInBytes(accessor.componentType) * tinygltf::GetNumComponentsInType(accessor.type); } return stride; } static uint32_t read_index(const unsigned char* data, int componentType) { switch (componentType) { case TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE: return static_cast(*reinterpret_cast(data)); case TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT: return static_cast(*reinterpret_cast(data)); case TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT: return *reinterpret_cast(data); default: throw std::runtime_error("Unsupported index component type"); } } // ---------------- Node world transform (translation + scale) ---------------- static float vec3_length(float x, float y, float z) { return std::sqrt(x * x + y * y + z * z); } struct NodeWorldTransform { Vector3 translation; Vector3 scale; }; static void compute_node_world_transform_recursive(const tinygltf::Model& model, int nodeIndex, const Vector3& parentTrans, const Vector3& parentScale, std::vector& outWorld) { const tinygltf::Node& node = model.nodes[nodeIndex]; // ----- local translation ----- Vector3 localTrans{0.f, 0.f, 0.f}; // ----- local scale ----- Vector3 localScale{1.f, 1.f, 1.f}; if (node.matrix.size() == 16) { // glTF matrix is column-major const auto& m = node.matrix; // translation from last column localTrans.x = static_cast(m[12]); localTrans.y = static_cast(m[13]); localTrans.z = static_cast(m[14]); // approximate scale = length of basis vectors float sx = vec3_length(static_cast(m[0]), static_cast(m[1]), static_cast(m[2])); float sy = vec3_length(static_cast(m[4]), static_cast(m[5]), static_cast(m[6])); float sz = vec3_length(static_cast(m[8]), static_cast(m[9]), static_cast(m[10])); if (sx > 0.f) localScale.x = sx; if (sy > 0.f) localScale.y = sy; if (sz > 0.f) localScale.z = sz; } // node.translation overrides matrix translation if present if (node.translation.size() == 3) { localTrans.x = static_cast(node.translation[0]); localTrans.y = static_cast(node.translation[1]); localTrans.z = static_cast(node.translation[2]); } // node.scale overrides matrix scale if present if (node.scale.size() == 3) { localScale.x = static_cast(node.scale[0]); localScale.y = static_cast(node.scale[1]); localScale.z = static_cast(node.scale[2]); } // ----- accumulate to world ----- Vector3 worldScale{parentScale.x * localScale.x, parentScale.y * localScale.y, parentScale.z * localScale.z}; // (ignoring scale influence on translation; good enough for simple setups) Vector3 worldTrans{parentTrans.x + localTrans.x, parentTrans.y + localTrans.y, parentTrans.z + localTrans.z}; outWorld[nodeIndex] = NodeWorldTransform{worldTrans, worldScale}; for (int childIdx : node.children) { compute_node_world_transform_recursive(model, childIdx, worldTrans, worldScale, outWorld); } } static std::vector compute_all_node_world_transforms(const tinygltf::Model& model) { std::vector world( model.nodes.size(), NodeWorldTransform{Vector3{0.f, 0.f, 0.f}, Vector3{1.f, 1.f, 1.f}}); if (model.nodes.empty()) return world; int sceneIndex = 0; if (!model.scenes.empty()) { if (model.defaultScene >= 0 && model.defaultScene < static_cast(model.scenes.size())) sceneIndex = model.defaultScene; else sceneIndex = 0; } if (!model.scenes.empty()) { const tinygltf::Scene& scene = model.scenes[sceneIndex]; for (int rootNodeIdx : scene.nodes) { compute_node_world_transform_recursive(model, rootNodeIdx, Vector3{0.f, 0.f, 0.f}, // parent translation Vector3{1.f, 1.f, 1.f}, // parent scale world); } } else { // No scenes defined: treat all nodes as roots for (size_t i = 0; i < model.nodes.size(); ++i) { compute_node_world_transform_recursive(model, static_cast(i), Vector3{0.f, 0.f, 0.f}, Vector3{1.f, 1.f, 1.f}, world); } } return world; } // ---------------- Load meshes/primitives per node (origin + scale) ---------------- static void load_glb_meshes(const std::string& filename, tinygltf::Model& outModel, std::vector& outMeshes, std::vector& outTextureIndices) { tinygltf::TinyGLTF loader; tinygltf::Model model; std::string err, warn; bool ok = loader.LoadBinaryFromFile(&model, &err, &warn, filename); if (!warn.empty()) std::cerr << "tinygltf warning: " << warn << std::endl; if (!ok) throw std::runtime_error("Failed to load GLB \"" + filename + "\": " + err); if (model.meshes.empty()) throw std::runtime_error("GLB has no meshes: " + filename); outMeshes.clear(); outTextureIndices.clear(); // Precompute world translation + scale for all nodes std::vector nodeWorld = compute_all_node_world_transforms(model); int primitiveIndexGlobal = 0; // Iterate over ALL nodes that reference a mesh for (size_t nodeIndex = 0; nodeIndex < model.nodes.size(); ++nodeIndex) { const tinygltf::Node& node = model.nodes[nodeIndex]; std::println("{}", node.name); if (node.mesh < 0 || node.mesh >= static_cast(model.meshes.size())) continue; const tinygltf::Mesh& gltfMesh = model.meshes[node.mesh]; const NodeWorldTransform& nodeTf = nodeWorld[nodeIndex]; const Vector3& nodeOrigin = nodeTf.translation; const Vector3& nodeScale = nodeTf.scale; for (const tinygltf::Primitive& prim : gltfMesh.primitives) { if (prim.mode != TINYGLTF_MODE_TRIANGLES) { std::cerr << "Skipping non-triangle primitive\n"; continue; } // POSITION (required) auto posIt = prim.attributes.find("POSITION"); if (posIt == prim.attributes.end()) { std::cerr << "Primitive has no POSITION attribute, skipping\n"; continue; } const tinygltf::Accessor& posAccessor = model.accessors[posIt->second]; if (posAccessor.type != TINYGLTF_TYPE_VEC3 || posAccessor.componentType != TINYGLTF_COMPONENT_TYPE_FLOAT) { std::cerr << "POSITION must be VEC3 float, skipping primitive\n"; continue; } const unsigned char* posBase = get_accessor_data_ptr(model, posAccessor); size_t posStride = get_accessor_stride(model, posAccessor); size_t vertexCount = posAccessor.count; std::vector vbo(vertexCount); // NORMAL (optional) const unsigned char* nrmBase = nullptr; size_t nrmStride = 0; auto nrmIt = prim.attributes.find("NORMAL"); if (nrmIt != prim.attributes.end()) { const tinygltf::Accessor& nrmAccessor = model.accessors[nrmIt->second]; if (nrmAccessor.type == TINYGLTF_TYPE_VEC3 && nrmAccessor.componentType == TINYGLTF_COMPONENT_TYPE_FLOAT) { nrmBase = get_accessor_data_ptr(model, nrmAccessor); nrmStride = get_accessor_stride(model, nrmAccessor); } } // TEXCOORD_0 (optional, vec2) const unsigned char* uvBase = nullptr; size_t uvStride = 0; auto uvIt = prim.attributes.find("TEXCOORD_0"); if (uvIt != prim.attributes.end()) { const tinygltf::Accessor& uvAccessor = model.accessors[uvIt->second]; if (uvAccessor.type == TINYGLTF_TYPE_VEC2 && uvAccessor.componentType == TINYGLTF_COMPONENT_TYPE_FLOAT) { uvBase = get_accessor_data_ptr(model, uvAccessor); uvStride = get_accessor_stride(model, uvAccessor); } } // Fill VBO for (size_t i = 0; i < vertexCount; ++i) { VertexType v{}; const float* pos = reinterpret_cast(posBase + i * posStride); v.position = Vector3{pos[0], pos[1], pos[2]}; if (nrmBase) { const float* nrm = reinterpret_cast(nrmBase + i * nrmStride); v.normal = Vector3{nrm[0], nrm[1], nrm[2]}; } else { v.normal = Vector3{0.f, 0.f, 1.f}; } if (uvBase) { const float* uv = reinterpret_cast(uvBase + i * uvStride); v.uv = omath::Vector2{uv[0], uv[1]}; } else { v.uv = omath::Vector2{0.f, 0.f}; } vbo[i] = v; } // Build triangle EBO (Vector3) std::vector ebo; if (prim.indices >= 0) { const tinygltf::Accessor& idxAccessor = model.accessors[prim.indices]; const unsigned char* idxBase = get_accessor_data_ptr(model, idxAccessor); size_t idxStride = get_accessor_stride(model, idxAccessor); size_t indexCount = idxAccessor.count; if (indexCount < 3) continue; ebo.reserve(indexCount / 3); for (size_t i = 0; i + 2 < indexCount; i += 3) { const unsigned char* p0 = idxBase + (i + 0) * idxStride; const unsigned char* p1 = idxBase + (i + 1) * idxStride; const unsigned char* p2 = idxBase + (i + 2) * idxStride; uint32_t i0 = read_index(p0, idxAccessor.componentType); uint32_t i1 = read_index(p1, idxAccessor.componentType); uint32_t i2 = read_index(p2, idxAccessor.componentType); ebo.emplace_back(Idx{i0, i1, i2}); } } else { if (vertexCount >= 3) { ebo.reserve(vertexCount / 3); for (uint32_t i = 0; i + 2 < vertexCount; i += 3) { ebo.emplace_back(Idx{i, i + 1, i + 2}); } } } if (vbo.empty() || ebo.empty()) { std::cerr << "Primitive produced empty vbo/ebo, skipping\n"; continue; } // ---- Decide which texture index to use for this primitive ---- int textureIndex = -1; // 1) Try material → baseColorTexture.index if (prim.material >= 0 && prim.material < static_cast(model.materials.size())) { const tinygltf::Material& mat = model.materials[prim.material]; if (mat.pbrMetallicRoughness.baseColorTexture.index >= 0) { textureIndex = mat.pbrMetallicRoughness.baseColorTexture.index; } } // 2) If that failed but there are textures, map primitive index to textures round-robin if (textureIndex < 0 && !model.textures.empty()) { textureIndex = primitiveIndexGlobal % static_cast(model.textures.size()); } outTextureIndices.push_back(textureIndex); // Create MeshType and store it, with origin & scale from node transform MeshType mesh{std::move(vbo), std::move(ebo)}; mesh.set_origin(nodeOrigin); // origin from glTF node mesh.set_scale(nodeScale); // scale from glTF node mesh.set_rotation(RotationAngles{}); // keep your rotation system outMeshes.emplace_back(std::move(mesh)); ++primitiveIndexGlobal; } } if (outMeshes.empty()) throw std::runtime_error("No primitives with triangles were loaded from GLB: " + filename); outModel = std::move(model); } // ---------------- Texture creation from glTF ---------------- static GLuint create_default_white_texture() { GLuint tex = 0; glGenTextures(1, &tex); glBindTexture(GL_TEXTURE_2D, tex); unsigned char white[4] = {(std::uint8_t)(rand() % 255), (std::uint8_t)(rand() % 255), (std::uint8_t)(rand() % 255), 255}; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, white); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); return tex; } static GLuint create_texture_from_image(const tinygltf::Image& image) { if (image.image.empty() || image.width <= 0 || image.height <= 0) { std::cerr << "Image is empty or invalid, using white texture\n"; return create_default_white_texture(); } GLenum format = GL_RGBA; if (image.component == 3) format = GL_RGB; else if (image.component == 4) format = GL_RGBA; else if (image.component == 1) format = GL_RED; GLuint glTex = 0; glGenTextures(1, &glTex); glBindTexture(GL_TEXTURE_2D, glTex); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexImage2D(GL_TEXTURE_2D, 0, format, image.width, image.height, 0, format, GL_UNSIGNED_BYTE, image.image.data()); glGenerateMipmap(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); return glTex; } // textureIndex is an index into model.textures static GLuint create_texture_from_gltf(const tinygltf::Model& model, int textureIndex) { const tinygltf::Image* image = nullptr; if (textureIndex >= 0 && textureIndex < static_cast(model.textures.size())) { const tinygltf::Texture& tex = model.textures[textureIndex]; int imageIndex = tex.source; if (imageIndex >= 0 && imageIndex < static_cast(model.images.size())) { image = &model.images[imageIndex]; } } // Fallback: if textureIndex invalid or texture had no image, use first image if available if (!image && !model.images.empty()) { image = &model.images[0]; } if (!image) return create_default_white_texture(); return create_texture_from_image(*image); } // ---------------- MAIN ---------------- int main(int argc, char** argv) { // filename from CLI or default std::string glbFile = (argc > 1) ? argv[1] : "untitled.glb"; // ---------- GLFW init ---------- if (!glfwInit()) { std::cerr << "Failed to init GLFW\n"; return -1; } glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #ifdef __APPLE__ glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); #endif constexpr int SCR_WIDTH = 800; constexpr int SCR_HEIGHT = 600; GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "omath glTF multi-mesh (textured)", nullptr, nullptr); if (!window) { std::cerr << "Failed to create GLFW window\n"; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //glfwSwapInterval(0); // ---------- GLEW init ---------- glewExperimental = GL_TRUE; GLenum glewErr = glewInit(); if (glewErr != GLEW_OK) { std::cerr << "Failed to initialize GLEW: " << reinterpret_cast(glewGetErrorString(glewErr)) << "\n"; glfwTerminate(); return -1; } // ---------- GL state ---------- glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glFrontFace(GL_CCW); // ---------- Load GLB meshes (CPU side) ---------- std::vector meshes; std::vector textureIndices; // per-primitive texture index tinygltf::Model gltfModel; try { load_glb_meshes(glbFile, gltfModel, meshes, textureIndices); std::cerr << "Loaded " << meshes.size() << " mesh primitives from GLB\n"; } catch (const std::exception& e) { std::cerr << "Error loading GLB: " << e.what() << std::endl; glfwTerminate(); return -1; } const size_t meshCount = meshes.size(); // ---------- Create GL buffers per mesh ---------- std::vector vaos(meshCount); std::vector vbos(meshCount); std::vector ebos(meshCount); std::vector textures(meshCount); std::vector> flatIndices(meshCount); glGenVertexArrays(static_cast(meshCount), vaos.data()); glGenBuffers(static_cast(meshCount), vbos.data()); glGenBuffers(static_cast(meshCount), ebos.data()); using Collider = omath::collision::MeshCollider; std::vector colliders; for (const auto& mesh : meshes) { colliders.emplace_back(mesh); } using ColliderInterface = omath::collision::ColliderInterface>; for (size_t i = 0; i < meshCount; ++i) { MeshType& mesh = meshes[i]; glBindVertexArray(vaos[i]); // VBO glBindBuffer(GL_ARRAY_BUFFER, vbos[i]); glBufferData(GL_ARRAY_BUFFER, mesh.m_vertex_buffer.size() * sizeof(VertexType), mesh.m_vertex_buffer.data(), GL_STATIC_DRAW); // Flatten triangle EBO (Vector3) to scalar index buffer flatIndices[i].reserve(mesh.m_element_buffer_object.size() * 3); for (const auto& tri : mesh.m_element_buffer_object) { flatIndices[i].push_back(tri.x); flatIndices[i].push_back(tri.y); flatIndices[i].push_back(tri.z); } // EBO glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebos[i]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, flatIndices[i].size() * sizeof(GLuint), flatIndices[i].data(), GL_STATIC_DRAW); // vertex layout: position / normal / uv glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, position)); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, normal)); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, uv)); glBindVertexArray(0); // Texture for this mesh (based on its texture index) textures[i] = create_texture_from_gltf(gltfModel, textureIndices[i]); } // ---------- Camera setup ---------- omath::projection::ViewPort viewPort{static_cast(SCR_WIDTH), static_cast(SCR_HEIGHT)}; Vector3 camPos{0.f, 1.0f, 6.f}; float nearPlane = 0.1f; float farPlane = 1000.f; auto fov = omath::projection::FieldOfView::from_degrees(110.f); MyCamera camera{camPos, {}, viewPort, fov, nearPlane, farPlane}; // ---------- Shader ---------- GLuint shaderProgram = createShaderProgram(); GLint uMvpLoc = glGetUniformLocation(shaderProgram, "uMVP"); GLint uModelLoc = glGetUniformLocation(shaderProgram, "uModel"); GLint uTexLoc = glGetUniformLocation(shaderProgram, "uTexture"); static float old_frame_time = glfwGetTime(); auto cam_collider = colliders.at(0); // ---------- Main loop ---------- // without fallback memory allocation on heap static std::array buf; std::pmr::monotonic_buffer_resource pool_stack{buf.data(), buf.size(), std::pmr::null_memory_resource()}; while (!glfwWindowShouldClose(window)) { float currentTime = glfwGetTime(); float deltaTime = currentTime - old_frame_time; old_frame_time = currentTime; glfwPollEvents(); auto y = camera.get_origin().y; float speed = 40.f; if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) { camera.set_origin(camera.get_origin() + omath::opengl_engine::forward_vector(camera.get_view_angles()) * speed * deltaTime); } if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) { camera.set_origin(camera.get_origin() - omath::opengl_engine::forward_vector(camera.get_view_angles()) * speed * deltaTime); } if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) { camera.set_origin(camera.get_origin() + omath::opengl_engine::right_vector(camera.get_view_angles()) * speed * deltaTime); } if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) { camera.set_origin(camera.get_origin() - omath::opengl_engine::right_vector(camera.get_view_angles()) * speed * deltaTime); } auto new_origin = camera.get_origin(); new_origin.y = y; camera.set_origin(new_origin); float look_speed = 60; if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) { auto view_angles = camera.get_view_angles(); view_angles.pitch += omath::opengl_engine::PitchAngle::from_degrees(look_speed * deltaTime); camera.set_view_angles(view_angles); } if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS) { auto view_angles = camera.get_view_angles(); view_angles.pitch -= omath::opengl_engine::PitchAngle::from_degrees(look_speed * deltaTime); camera.set_view_angles(view_angles); } if (glfwGetKey(window, GLFW_KEY_LEFT) == GLFW_PRESS) { auto view_angles = camera.get_view_angles(); view_angles.yaw += omath::opengl_engine::YawAngle::from_degrees(look_speed * deltaTime); camera.set_view_angles(view_angles); } if (glfwGetKey(window, GLFW_KEY_RIGHT) == GLFW_PRESS) { auto view_angles = camera.get_view_angles(); view_angles.yaw -= omath::opengl_engine::YawAngle::from_degrees(look_speed * deltaTime); camera.set_view_angles(view_angles); } cam_collider.set_origin(camera.get_origin()); bool on_ground = false; for (int b = 0; b < colliders.size(); b++) { auto& collider_a = cam_collider; auto& collider_b = colliders.at(b); if (&collider_a == &collider_b) continue; auto info = omath::collision::GjkAlgorithm::is_collide_with_simplex_info(collider_a, collider_b); if (!info.hit) continue; pool_stack.release(); auto result = omath::collision::Epa::solve(collider_a, collider_b, info.simplex, {}, pool_stack); const auto deg = result->penetration_vector.angle_between(omath::opengl_engine::k_abs_up)->as_degrees(); on_ground |= deg > 150.f; //DO NOT PUSH OBJECT AWAY, NEED TO KEEP IT INSIDE OTHER OBJECTS TO //CHECK IF PLAYER STANDS ON SOMETHING if (std::abs(result->penetration_vector.y) <= 0.15 && deg > 150) continue; collider_a.set_origin(collider_a.get_origin() - result->penetration_vector * 1.005); camera.set_origin(camera.get_origin() - result->penetration_vector * 1.005); } if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && on_ground) { cam_collider.set_origin(cam_collider.get_origin() + omath::opengl_engine::k_abs_up * 5); camera.set_origin(cam_collider.get_origin() + omath::opengl_engine::k_abs_up * 5); on_ground = false; } if (!on_ground) { cam_collider.set_origin(cam_collider.get_origin() - omath::opengl_engine::k_abs_up * 5 * deltaTime); camera.set_origin(cam_collider.get_origin() - omath::opengl_engine::k_abs_up * 5 * deltaTime); } int fbW = 0, fbH = 0; glfwGetFramebufferSize(window, &fbW, &fbH); glViewport(0, 0, fbW, fbH); viewPort.m_width = static_cast(fbW); viewPort.m_height = static_cast(fbH); camera.set_view_port(viewPort); glClearColor(0.1f, 0.15f, 0.2f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); const Mat4x4& viewProj = camera.get_view_projection_matrix(); glUseProgram(shaderProgram); const float* mvpPtr = viewProj.raw_array().data(); glUniformMatrix4fv(uMvpLoc, 1, GL_FALSE, mvpPtr); glActiveTexture(GL_TEXTURE0); glUniform1i(uTexLoc, 0); // Render all meshes for (size_t i = 0; i < meshCount; ++i) { MeshType& mesh = meshes[i]; const Mat4x4 model = mesh.get_to_world_matrix(); const float* modelPtr = model.raw_array().data(); glUniformMatrix4fv(uModelLoc, 1, GL_FALSE, modelPtr); glBindTexture(GL_TEXTURE_2D, textures[i]); glBindVertexArray(vaos[i]); glDrawElements(GL_TRIANGLES, static_cast(flatIndices[i].size()), GL_UNSIGNED_INT, nullptr); } if (glfwGetKey(window, GLFW_KEY_F4) == GLFW_PRESS) { std::println("FPS: {}", (int)(1 / deltaTime)); } glfwSwapBuffers(window); } // ---------- Cleanup ---------- for (size_t i = 0; i < meshCount; ++i) { glDeleteTextures(1, &textures[i]); glDeleteVertexArrays(1, &vaos[i]); glDeleteBuffers(1, &vbos[i]); glDeleteBuffers(1, &ebos[i]); } glDeleteProgram(shaderProgram); glfwDestroyWindow(window); glfwTerminate(); return 0; }