Files
omath/tests/general/unit_test_line_tracer.cpp
Orange++ d935caf1a4 Feature/more constexpr (#125)
* added constexpr

* fix

* improved stuff

* added const

* improvement

* fix

* fix

* patch
2025-12-24 02:32:14 +03:00

66 lines
2.6 KiB
C++

#include "omath/collision/line_tracer.hpp"
#include "omath/linear_algebra/vector3.hpp"
#include "omath/linear_algebra/triangle.hpp"
#include <gtest/gtest.h>
using omath::Vector3;
TEST(LineTracerTests, ParallelRayReturnsEnd)
{
// Triangle in XY plane
constexpr omath::Triangle<Vector3<float>> tri{ {0.f,0.f,0.f}, {1.f,0.f,0.f}, {0.f,1.f,0.f} };
omath::collision::Ray ray;
ray.start = Vector3<float>{0.f,0.f,1.f};
ray.end = Vector3<float>{1.f,1.f,2.f}; // direction parallel to plane normal (z) -> but choose parallel to plane? make direction parallel to triangle plane
ray.end = Vector3<float>{1.f,1.f,1.f};
// For a ray parallel to the triangle plane the algorithm should return ray.end
const auto hit = omath::collision::LineTracer::get_ray_hit_point(ray, tri);
EXPECT_TRUE(hit == ray.end);
EXPECT_TRUE(omath::collision::LineTracer::can_trace_line(ray, tri));
}
TEST(LineTracerTests, MissesTriangleReturnsEnd)
{
constexpr omath::Triangle<Vector3<float>> tri{ {0.f,0.f,0.f}, {1.f,0.f,0.f}, {0.f,1.f,0.f} };
omath::collision::Ray ray;
ray.start = Vector3<float>{2.f,2.f,-1.f};
ray.end = Vector3<float>{2.f,2.f,1.f}; // passes above the triangle area
const auto hit = omath::collision::LineTracer::get_ray_hit_point(ray, tri);
EXPECT_TRUE(hit == ray.end);
}
TEST(LineTracerTests, HitTriangleReturnsPointInsideSegment)
{
constexpr omath::Triangle<Vector3<float>> tri{ {0.f,0.f,0.f}, {2.f,0.f,0.f}, {0.f,2.f,0.f} };
omath::collision::Ray ray;
ray.start = Vector3<float>{0.25f,0.25f,-1.f};
ray.end = Vector3<float>{0.25f,0.25f,1.f};
const auto hit = omath::collision::LineTracer::get_ray_hit_point(ray, tri);
// Should return a point between start and end (z approximately 0)
EXPECT_NE(hit, ray.end);
EXPECT_NEAR(hit.z, 0.f, 1e-4f);
// t_hit should be between 0 and 1 along the ray direction
const auto dir = ray.direction_vector();
// find t such that start + dir * t == hit (only check z comp for stability)
const float t = (hit.z - ray.start.z) / dir.z;
EXPECT_GT(t, 0.f);
EXPECT_LT(t, 1.f);
}
TEST(LineTracerTests, InfiniteLengthEarlyOut)
{
constexpr omath::Triangle<Vector3<float>> tri{ {0.f,0.f,0.f}, {1.f,0.f,0.f}, {0.f,1.f,0.f} };
omath::collision::Ray ray;
ray.start = Vector3<float>{0.25f,0.25f,0.f};
ray.end = Vector3<float>{0.25f,0.25f,1.f};
ray.infinite_length = true;
// If t_hit <= epsilon the algorithm should return ray.end when infinite_length is true.
// Using start on the triangle plane should produce t_hit <= epsilon.
const auto hit = omath::collision::LineTracer::get_ray_hit_point(ray, tri);
EXPECT_TRUE(hit == ray.end);
}