Files
omath/examples/example_glfw3.cpp
2025-11-29 21:24:45 +03:00

333 lines
10 KiB
C++

// main.cpp
#include <cstdint>
#include <iostream>
#include <vector>
// --- OpenGL / windowing ---
#include <GL/glew.h> // GLEW must come before GLFW
#include <GLFW/glfw3.h>
// --- your math / engine stuff ---
#include "omath/3d_primitives/mesh.hpp"
#include "omath/engines/opengl_engine/camera.hpp"
#include "omath/engines/opengl_engine/constants.hpp"
#include "omath/engines/opengl_engine/mesh.hpp"
#include "omath/linear_algebra/vector3.hpp"
using omath::Vector3;
// ---------------- TYPE ALIASES (ADAPT TO YOUR LIB) ----------------
// Your 4x4 matrix type
using Mat4x4 = omath::opengl_engine::Mat4X4;
// Rotation angles for the Mesh (whatever you use for rotation)
using RotationAngles =
omath::opengl_engine::ViewAngles; // TODO: if you have a dedicated angle type for mesh rotation, use it
// View angles type for camera trait
using ViewAngles = RotationAngles; // TODO: if your camera uses a different view-angle type, change this
// Your trait types (that satisfy the concepts declared in your headers)
using CameraTrait = /* TODO: your camera engine trait type here */ void;
using MeshTrait = /* TODO: your mesh rotation trait type here */ void;
// For brevity, alias the templates instantiated with your types
using VertexType = omath::primitives::Vertex<Vector3<float>>;
using CubeMesh = omath::opengl_engine::Mesh;
using MyCamera = omath::opengl_engine::Camera;
// ---------------- SHADERS ----------------
static const char* vertexShaderSource = R"(
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec3 aUv;
uniform mat4 uMVP;
uniform mat4 uModel;
out vec3 vNormal;
out vec3 vUv;
void main() {
vNormal = aNormal;
vUv = aUv;
gl_Position = uMVP * uModel * vec4(aPos, 1.0);
}
)";
static const char* fragmentShaderSource = R"(
#version 330 core
in vec3 vNormal;
in vec3 vUv;
out vec4 FragColor;
void main() {
vec3 baseColor = normalize(abs(vNormal));
FragColor = vec4(baseColor, 1.0);
}
)";
GLuint compileShader(GLenum type, const char* src)
{
GLuint shader = glCreateShader(type);
glShaderSource(shader, 1, &src, nullptr);
glCompileShader(shader);
GLint ok = GL_FALSE;
glGetShaderiv(shader, GL_COMPILE_STATUS, &ok);
if (!ok)
{
char log[1024];
glGetShaderInfoLog(shader, sizeof(log), nullptr, log);
std::cerr << "Shader compile error: " << log << std::endl;
}
return shader;
}
GLuint createShaderProgram()
{
GLuint vs = compileShader(GL_VERTEX_SHADER, vertexShaderSource);
GLuint fs = compileShader(GL_FRAGMENT_SHADER, fragmentShaderSource);
GLuint prog = glCreateProgram();
glAttachShader(prog, vs);
glAttachShader(prog, fs);
glLinkProgram(prog);
GLint ok = GL_FALSE;
glGetProgramiv(prog, GL_LINK_STATUS, &ok);
if (!ok)
{
char log[1024];
glGetProgramInfoLog(prog, sizeof(log), nullptr, log);
std::cerr << "Program link error: " << log << std::endl;
}
glDeleteShader(vs);
glDeleteShader(fs);
return prog;
}
void framebuffer_size_callback(GLFWwindow* /*window*/, int w, int h)
{
glViewport(0, 0, w, h);
}
// ---------------- MAIN ----------------
int main()
{
// ---------- GLFW init ----------
if (!glfwInit())
{
std::cerr << "Failed to init GLFW\n";
return -1;
}
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
const int SCR_WIDTH = 800;
const int SCR_HEIGHT = 600;
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "omath cube + camera (GLEW)", nullptr, nullptr);
if (!window)
{
std::cerr << "Failed to create GLFW window\n";
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// ---------- GLEW init ----------
glewExperimental = GL_TRUE;
GLenum glewErr = glewInit();
if (glewErr != GLEW_OK)
{
std::cerr << "Failed to initialize GLEW: " << reinterpret_cast<const char*>(glewGetErrorString(glewErr))
<< "\n";
glfwTerminate();
return -1;
}
glEnable(GL_DEPTH_TEST);
// ---------- Build Cube Mesh (CPU side) ----------
std::vector<omath::primitives::Vertex<>> vbo;
vbo.reserve(8);
Vector3<float> p000{-0.5f, -0.5f, -0.5f};
Vector3<float> p001{-0.5f, -0.5f, 0.5f};
Vector3<float> p010{-0.5f, 0.5f, -0.5f};
Vector3<float> p011{-0.5f, 0.5f, 0.5f};
Vector3<float> p100{0.5f, -0.5f, -0.5f};
Vector3<float> p101{0.5f, -0.5f, 0.5f};
Vector3<float> p110{0.5f, 0.5f, -0.5f};
Vector3<float> p111{0.5f, 0.5f, 0.5f};
VertexType v0{p000, Vector3<float>{-1, -1, -1}, Vector3<float>{0, 0, 0}};
VertexType v1{p001, Vector3<float>{-1, -1, 1}, Vector3<float>{0, 1, 0}};
VertexType v2{p010, Vector3<float>{-1, 1, -1}, Vector3<float>{1, 0, 0}};
VertexType v3{p011, Vector3<float>{-1, 1, 1}, Vector3<float>{1, 1, 0}};
VertexType v4{p100, Vector3<float>{1, -1, -1}, Vector3<float>{0, 0, 1}};
VertexType v5{p101, Vector3<float>{1, -1, 1}, Vector3<float>{0, 1, 1}};
VertexType v6{p110, Vector3<float>{1, 1, -1}, Vector3<float>{1, 0, 1}};
VertexType v7{p111, Vector3<float>{1, 1, 1}, Vector3<float>{1, 1, 1}};
vbo.push_back(v0); // 0
vbo.push_back(v1); // 1
vbo.push_back(v2); // 2
vbo.push_back(v3); // 3
vbo.push_back(v4); // 4
vbo.push_back(v5); // 5
vbo.push_back(v6); // 6
vbo.push_back(v7); // 7
std::vector<Vector3<std::uint32_t>> ebo;
ebo.reserve(12);
using Idx = Vector3<std::uint32_t>;
// front (z+)
ebo.emplace_back(Idx{1, 5, 7});
ebo.emplace_back(Idx{1, 7, 3});
// back (z-)
ebo.emplace_back(Idx{0, 2, 6});
ebo.emplace_back(Idx{0, 6, 4});
// left (x-)
ebo.emplace_back(Idx{0, 1, 3});
ebo.emplace_back(Idx{0, 3, 2});
// right (x+)
ebo.emplace_back(Idx{4, 6, 7});
ebo.emplace_back(Idx{4, 7, 5});
// bottom (y-)
ebo.emplace_back(Idx{0, 4, 5});
ebo.emplace_back(Idx{0, 5, 1});
// top (y+)
ebo.emplace_back(Idx{2, 3, 7});
ebo.emplace_back(Idx{2, 7, 6});
CubeMesh cube{std::move(vbo), std::move(ebo)};
cube.set_origin(Vector3<float>{0.f, 0.f, 0.f});
cube.set_scale(Vector3<float>{1.f, 2.f, 1.f});
cube.set_rotation(RotationAngles{});
// ---------- OpenGL buffers ----------
GLuint VAO = 0, VBO = 0, EBO_GL = 0;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO_GL);
glBindVertexArray(VAO);
// upload vertex buffer
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, cube.m_vertex_buffer.size() * sizeof(VertexType), cube.m_vertex_buffer.data(),
GL_STATIC_DRAW);
// flatten Ebo to GL indices
std::vector<GLuint> flatIndices;
flatIndices.reserve(cube.m_vertex_array_object.size() * 3);
for (const auto& tri : cube.m_vertex_array_object)
{
flatIndices.push_back(tri.x);
flatIndices.push_back(tri.y);
flatIndices.push_back(tri.z);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO_GL);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, flatIndices.size() * sizeof(GLuint), flatIndices.data(), GL_STATIC_DRAW);
// vertex layout: position / normal / uv (each Vector3<float>)
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, position));
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, normal));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof(VertexType), (void*)offsetof(VertexType, uv));
glBindVertexArray(0);
// ---------- Camera setup ----------
omath::projection::ViewPort viewPort{static_cast<float>(SCR_WIDTH), static_cast<float>(SCR_HEIGHT)};
Vector3<float> camPos{0.f, 0.f, 3.f};
float nearPlane = 0.1f;
float farPlane = 100.f;
auto fov = omath::projection::FieldOfView::from_degrees(90.f);
// NOTE: you must replace CameraTrait alias above with your real type
MyCamera camera{camPos, {}, viewPort, fov, nearPlane, farPlane};
// ---------- Shader ----------
GLuint shaderProgram = createShaderProgram();
GLint uMvpLoc = glGetUniformLocation(shaderProgram, "uMVP");
GLint uModel = glGetUniformLocation(shaderProgram, "uModel");
static float old_frame_time = glfwGetTime();
// ---------- Main loop ----------
while (!glfwWindowShouldClose(window))
{
glfwPollEvents();
float currentTime = glfwGetTime();
float deltaTime = currentTime - old_frame_time;
old_frame_time = currentTime;
int fbW, fbH;
glfwGetFramebufferSize(window, &fbW, &fbH);
glViewport(0, 0, fbW, fbH);
viewPort.m_width = static_cast<float>(fbW);
viewPort.m_height = static_cast<float>(fbH);
camera.set_view_port(viewPort);
glClearColor(0.1f, 0.15f, 0.2f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RotationAngles rot = cube.get_rotation_angles();
rot.yaw += omath::opengl_engine::YawAngle::from_degrees(40.f * deltaTime);
rot.roll += omath::opengl_engine::YawAngle::from_degrees(40.f * deltaTime);
cube.set_rotation(rot);
const Mat4x4& viewProj = camera.get_view_projection_matrix();
const auto& model = cube.get_to_world_matrix();
glUseProgram(shaderProgram);
// Send matrix to GPU
// TODO: replace mvp.data() with whatever your Mat4x4 uses to expose float*
const float* mvpPtr = viewProj.raw_array().data(); // assumes column-major float[16]
glUniformMatrix4fv(uMvpLoc, 1, GL_FALSE, mvpPtr);
const float* modelPtr = model.raw_array().data(); // assumes column-major float[16]
glBindVertexArray(VAO);
glUniformMatrix4fv(uModel, 1, GL_FALSE, modelPtr);
glDrawElements(GL_TRIANGLES, static_cast<GLsizei>(flatIndices.size()), GL_UNSIGNED_INT, nullptr);
glfwSwapBuffers(window);
}
// ---------- Cleanup ----------
glDeleteVertexArrays(1, &VAO);
glDeleteBuffers(1, &VBO);
glDeleteBuffers(1, &EBO_GL);
glDeleteProgram(shaderProgram);
glfwDestroyWindow(window);
glfwTerminate();
return 0;
}