Files
omath/source/projectile_prediction/proj_pred_engine_legacy.cpp
2025-05-03 20:31:59 +03:00

71 lines
3.4 KiB
C++

#include "omath/projectile_prediction/proj_pred_engine_legacy.hpp"
#include <cmath>
#include <omath/angles.hpp>
namespace omath::projectile_prediction
{
ProjPredEngineLegacy::ProjPredEngineLegacy(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time, const float distance_tolerance)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time), m_distance_tolerance(distance_tolerance)
{
}
std::optional<Vector3<float>> ProjPredEngineLegacy::maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const
{
for (float time = 0.f; time < m_maximum_simulation_time; time += m_simulation_time_step)
{
const auto predicted_target_position = target.predict_position(time, m_gravity_constant);
const auto projectile_pitch
= maybe_calculate_projectile_launch_pitch_angle(projectile, predicted_target_position);
if (!projectile_pitch.has_value()) [[unlikely]]
continue;
if (!is_projectile_reached_target(predicted_target_position, projectile, projectile_pitch.value(), time))
continue;
const auto delta2d = (predicted_target_position - projectile.m_origin).length_2d();
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return Vector3(predicted_target_position.x, predicted_target_position.y, projectile.m_origin.z + height);
}
return std::nullopt;
}
std::optional<float>
ProjPredEngineLegacy::maybe_calculate_projectile_launch_pitch_angle(const Projectile& projectile,
const Vector3<float>& target_position) const
{
const auto bullet_gravity = m_gravity_constant * projectile.m_gravity_scale;
const auto delta = target_position - projectile.m_origin;
const auto distance2d = delta.length_2d();
const auto distance2d_sqr = distance2d * distance2d;
const auto launch_speed_sqr = projectile.m_launch_speed * projectile.m_launch_speed;
float root = launch_speed_sqr * launch_speed_sqr
- bullet_gravity * (bullet_gravity * distance2d_sqr + 2.0f * delta.z * launch_speed_sqr);
if (root < 0.0f) [[unlikely]]
return std::nullopt;
root = std::sqrt(root);
const float angle = std::atan((launch_speed_sqr - root) / (bullet_gravity * distance2d));
return angles::radians_to_degrees(angle);
}
bool ProjPredEngineLegacy::is_projectile_reached_target(const Vector3<float>& target_position,
const Projectile& projectile, const float pitch,
const float time) const
{
const auto yaw = projectile.m_origin.view_angle_to(target_position).y;
const auto projectile_position = projectile.predict_position(pitch, yaw, time, m_gravity_constant);
return projectile_position.distance_to(target_position) <= m_distance_tolerance;
}
} // namespace omath::projectile_prediction