Files
omath/include/omath/linear_algebra/mat.hpp
Orange 6e59957247 Adds mat_scale function
Introduces a utility function to create a scaling matrix from a Vector3.
This simplifies the creation of scale transformations, particularly useful for the GJK algorithm implementation.
2025-11-09 14:19:08 +03:00

748 lines
27 KiB
C++

//
// Created by vlad on 9/29/2024.
//
#pragma once
#include "vector3.hpp"
#include <algorithm>
#include <array>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <utility>
#ifdef OMATH_USE_AVX2
#include <immintrin.h>
#endif
#undef near
#undef far
namespace omath
{
struct MatSize
{
size_t rows, columns;
};
enum class MatStoreType : uint8_t
{
ROW_MAJOR = 0,
COLUMN_MAJOR
};
template<typename M1, typename M2> concept MatTemplateEqual
= (M1::rows == M2::rows) && (M1::columns == M2::columns)
&& std::is_same_v<typename M1::value_type, typename M2::value_type> && (M1::store_type == M2::store_type);
template<size_t Rows = 0, size_t Columns = 0, class Type = float, MatStoreType StoreType = MatStoreType::ROW_MAJOR>
requires std::is_arithmetic_v<Type>
class Mat final
{
public:
using ContainedType = Type;
constexpr Mat() noexcept
{
clear();
}
[[nodiscard]]
constexpr static MatStoreType get_store_ordering() noexcept
{
return StoreType;
}
constexpr Mat(const std::initializer_list<std::initializer_list<Type>>& rows)
{
if (rows.size() != Rows)
throw std::invalid_argument("Initializer list rows size does not match template parameter Rows");
auto row_it = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++row_it)
{
if (row_it->size() != Columns)
throw std::invalid_argument(
"All rows must have the same number of columns as template parameter Columns");
auto col_it = row_it->begin();
for (size_t j = 0; j < Columns; ++j, ++col_it)
{
at(i, j) = std::move(*col_it);
}
}
}
constexpr explicit Mat(const Type* raw_data)
{
std::copy_n(raw_data, Rows * Columns, m_data.begin());
}
constexpr Mat(const Mat& other) noexcept
{
m_data = other.m_data;
}
[[nodiscard]]
constexpr Type& operator[](const size_t row, const size_t col)
{
return at(row, col);
}
[[nodiscard]]
constexpr const Type& operator[](const size_t row, const size_t col) const
{
return at(row, col);
}
constexpr Mat(Mat&& other) noexcept
{
m_data = std::move(other.m_data);
}
[[nodiscard]]
static constexpr size_t row_count() noexcept
{
return Rows;
}
[[nodiscard]]
static constexpr size_t columns_count() noexcept
{
return Columns;
}
[[nodiscard]]
static consteval MatSize size() noexcept
{
return {Rows, Columns};
}
[[nodiscard]]
constexpr const Type& at(const size_t row_index, const size_t column_index) const
{
#if !defined(NDEBUG) && defined(OMATH_SUPRESS_SAFETY_CHECKS)
if (row_index >= Rows || column_index >= Columns)
throw std::out_of_range("Index out of range");
#endif
if constexpr (StoreType == MatStoreType::ROW_MAJOR)
return m_data[row_index * Columns + column_index];
else if constexpr (StoreType == MatStoreType::COLUMN_MAJOR)
return m_data[row_index + column_index * Rows];
else
{
static_assert(false, "Invalid matrix access convention");
std::unreachable();
}
}
[[nodiscard]] constexpr Type& at(const size_t row_index, const size_t column_index)
{
return const_cast<Type&>(std::as_const(*this).at(row_index, column_index));
}
[[nodiscard]]
constexpr Type sum() const noexcept
{
return std::accumulate(m_data.begin(), m_data.end(), static_cast<Type>(0));
}
constexpr void clear() noexcept
{
set(static_cast<Type>(0));
}
constexpr void set(const Type& value) noexcept
{
std::ranges::fill(m_data, value);
}
// Operator overloading for multiplication with another Mat
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*(const Mat<Columns, OtherColumns, Type, StoreType>& other) const
{
#ifdef OMATH_USE_AVX2
if constexpr (StoreType == MatStoreType::ROW_MAJOR)
return avx_multiply_row_major(other);
else if constexpr (StoreType == MatStoreType::COLUMN_MAJOR)
return avx_multiply_col_major(other);
#else
if constexpr (StoreType == MatStoreType::ROW_MAJOR)
return cache_friendly_multiply_row_major(other);
else if constexpr (StoreType == MatStoreType::COLUMN_MAJOR)
return cache_friendly_multiply_col_major(other);
#endif
else
std::unreachable();
}
constexpr Mat& operator*=(const Type& f) noexcept
{
std::ranges::for_each(m_data, [&f](auto& val) { val *= f; });
return *this;
}
template<size_t OtherColumns> constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*=(const Mat<Columns, OtherColumns, Type, StoreType>& other)
{
return *this = *this * other;
}
[[nodiscard]]
constexpr Mat operator*(const Type& value) const noexcept
{
Mat result(*this);
result *= value;
return result;
}
constexpr Mat& operator/=(const Type& value) noexcept
{
std::ranges::for_each(m_data, [&value](auto& val) { val /= value; });
return *this;
}
[[nodiscard]]
constexpr Mat operator/(const Type& value) const noexcept
{
Mat result(*this);
result /= value;
return result;
}
constexpr Mat& operator=(const Mat& other) noexcept
{
if (this != &other)
m_data = other.m_data;
return *this;
}
constexpr Mat& operator=(Mat&& other) noexcept
{
if (this != &other)
m_data = std::move(other.m_data);
return *this;
}
[[nodiscard]]
constexpr Mat<Columns, Rows, Type, StoreType> transposed() const noexcept
{
Mat<Columns, Rows, Type, StoreType> transposed;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
transposed.at(j, i) = at(i, j);
return transposed;
}
[[nodiscard]]
constexpr Type determinant() const
{
static_assert(Rows == Columns, "Determinant is only defined for square matrices.");
if constexpr (Rows == 1)
return at(0, 0);
if constexpr (Rows == 2)
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
if constexpr (Rows > 2)
{
Type det = 0;
for (size_t column = 0; column < Columns; ++column)
{
const Type cofactor = at(0, column) * alg_complement(0, column);
det += cofactor;
}
return det;
}
std::unreachable();
}
[[nodiscard]]
constexpr Mat<Rows - 1, Columns - 1, Type, StoreType> strip(const size_t row, const size_t column) const
{
static_assert(Rows - 1 > 0 && Columns - 1 > 0);
Mat<Rows - 1, Columns - 1, Type, StoreType> result;
for (size_t i = 0, m = 0; i < Rows; ++i)
{
if (i == row)
continue;
for (size_t j = 0, n = 0; j < Columns; ++j)
{
if (j == column)
continue;
result.at(m, n) = at(i, j);
++n;
}
++m;
}
return result;
}
[[nodiscard]]
constexpr Type minor(const size_t row, const size_t column) const
{
return strip(row, column).determinant();
}
[[nodiscard]]
constexpr Type alg_complement(const size_t row, const size_t column) const
{
const auto minor_value = minor(row, column);
return (row + column + 2) % 2 == 0 ? minor_value : -minor_value;
}
[[nodiscard]]
constexpr const std::array<Type, Rows * Columns>& raw_array() const
{
return m_data;
}
[[nodiscard]]
constexpr std::array<Type, Rows * Columns>& raw_array()
{
return m_data;
}
[[nodiscard]]
std::string to_string() const noexcept
{
std::ostringstream oss;
oss << "[[";
for (size_t i = 0; i < Rows; ++i)
{
if (i > 0)
oss << " [";
for (size_t j = 0; j < Columns; ++j)
{
oss << std::setw(9) << std::fixed << std::setprecision(3) << at(i, j);
if (j != Columns - 1)
oss << ", ";
}
oss << (i == Rows - 1 ? "]]" : "]\n");
}
return oss.str();
}
[[nodiscard]]
std::wstring to_wstring() const noexcept
{
const auto ascii_string = to_string();
return {ascii_string.cbegin(), ascii_string.cend()};
}
[[nodiscard]]
// ReSharper disable once CppInconsistentNaming
std::u8string to_u8string() const noexcept
{
const auto ascii_string = to_string();
return {ascii_string.cbegin(), ascii_string.cend()};
}
[[nodiscard]]
bool operator==(const Mat& mat) const
{
return m_data == mat.m_data;
}
[[nodiscard]]
bool operator!=(const Mat& mat) const
{
return !operator==(mat);
}
// Static methods that return fixed-size matrices
[[nodiscard]]
constexpr static Mat<4, 4> to_screen_mat(const Type& screen_width, const Type& screen_height) noexcept
{
return {
{screen_width / 2, 0, 0, 0},
{0, -screen_height / 2, 0, 0},
{0, 0, 1, 0},
{screen_width / 2, screen_height / 2, 0, 1},
};
}
[[nodiscard]]
constexpr std::optional<Mat> inverted() const
{
const auto det = determinant();
if (det == 0)
return std::nullopt;
const auto transposed_mat = transposed();
Mat result;
for (std::size_t row = 0; row < Rows; row++)
for (std::size_t column = 0; column < Rows; column++)
result.at(row, column) = transposed_mat.alg_complement(row, column);
result /= det;
return {result};
}
private:
std::array<Type, Rows * Columns> m_data;
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, MatStoreType::ROW_MAJOR>
cache_friendly_multiply_row_major(const Mat<Columns, OtherColumns, Type, MatStoreType::ROW_MAJOR>& other) const
{
Mat<Rows, OtherColumns, Type, MatStoreType::ROW_MAJOR> result;
for (std::size_t row_index = 0; row_index < Rows; ++row_index)
for (std::size_t column_index = 0; column_index < Columns; ++column_index)
{
const Type& current_number = at(row_index, column_index);
for (std::size_t other_column = 0; other_column < OtherColumns; ++other_column)
result.at(row_index, other_column) += current_number * other.at(column_index, other_column);
}
return result;
}
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, MatStoreType::COLUMN_MAJOR> cache_friendly_multiply_col_major(
const Mat<Columns, OtherColumns, Type, MatStoreType::COLUMN_MAJOR>& other) const
{
Mat<Rows, OtherColumns, Type, MatStoreType::COLUMN_MAJOR> result;
for (std::size_t other_column = 0; other_column < OtherColumns; ++other_column)
for (std::size_t column_index = 0; column_index < Columns; ++column_index)
{
const Type& current_number = other.at(column_index, other_column);
for (std::size_t row_index = 0; row_index < Rows; ++row_index)
result.at(row_index, other_column) += at(row_index, column_index) * current_number;
}
return result;
}
#ifdef OMATH_USE_AVX2
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, MatStoreType::COLUMN_MAJOR>
avx_multiply_col_major(const Mat<Columns, OtherColumns, Type, MatStoreType::COLUMN_MAJOR>& other) const
{
Mat<Rows, OtherColumns, Type, MatStoreType::COLUMN_MAJOR> result;
const Type* this_mat_data = this->raw_array().data();
const Type* other_mat_data = other.raw_array().data();
Type* result_mat_data = result.raw_array().data();
if constexpr (std::is_same_v<Type, float>)
{
// ReSharper disable once CppTooWideScopeInitStatement
constexpr std::size_t vector_size = 8;
for (std::size_t j = 0; j < OtherColumns; ++j)
{
auto* c_col = reinterpret_cast<float*>(result_mat_data + j * Rows);
for (std::size_t k = 0; k < Columns; ++k)
{
const float bkj = reinterpret_cast<const float*>(other_mat_data)[k + j * Columns];
const __m256 bkj_vec = _mm256_set1_ps(bkj);
const auto* a_col_k = reinterpret_cast<const float*>(this_mat_data + k * Rows);
std::size_t i = 0;
for (; i + vector_size <= Rows; i += vector_size)
{
__m256 cvec = _mm256_loadu_ps(c_col + i);
const __m256 a_vec = _mm256_loadu_ps(a_col_k + i);
cvec = _mm256_fmadd_ps(a_vec, bkj_vec, cvec);
_mm256_storeu_ps(c_col + i, cvec);
}
for (; i < Rows; ++i)
c_col[i] += a_col_k[i] * bkj;
}
}
}
else if (std::is_same_v<Type, double>)
{ // double
// ReSharper disable once CppTooWideScopeInitStatement
constexpr std::size_t vector_size = 4;
for (std::size_t j = 0; j < OtherColumns; ++j)
{
auto* c_col = reinterpret_cast<double*>(result_mat_data + j * Rows);
for (std::size_t k = 0; k < Columns; ++k)
{
const double bkj = reinterpret_cast<const double*>(other_mat_data)[k + j * Columns];
const __m256d bkj_vec = _mm256_set1_pd(bkj);
const auto* a_col_k = reinterpret_cast<const double*>(this_mat_data + k * Rows);
std::size_t i = 0;
for (; i + vector_size <= Rows; i += vector_size)
{
__m256d cvec = _mm256_loadu_pd(c_col + i);
const __m256d a_vec = _mm256_loadu_pd(a_col_k + i);
cvec = _mm256_fmadd_pd(a_vec, bkj_vec, cvec);
_mm256_storeu_pd(c_col + i, cvec);
}
for (; i < Rows; ++i)
c_col[i] += a_col_k[i] * bkj;
}
}
}
else
std::unreachable();
return result;
}
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, MatStoreType::ROW_MAJOR>
avx_multiply_row_major(const Mat<Columns, OtherColumns, Type, MatStoreType::ROW_MAJOR>& other) const
{
Mat<Rows, OtherColumns, Type, MatStoreType::ROW_MAJOR> result;
const Type* this_mat_data = this->raw_array().data();
const Type* other_mat_data = other.raw_array().data();
Type* result_mat_data = result.raw_array().data();
if constexpr (std::is_same_v<Type, float>)
{
// ReSharper disable once CppTooWideScopeInitStatement
constexpr std::size_t vector_size = 8;
for (std::size_t i = 0; i < Rows; ++i)
{
Type* c_row = result_mat_data + i * OtherColumns;
for (std::size_t k = 0; k < Columns; ++k)
{
const auto aik = static_cast<float>(this_mat_data[i * Columns + k]);
const __m256 aik_vec = _mm256_set1_ps(aik);
const auto* b_row = reinterpret_cast<const float*>(other_mat_data + k * OtherColumns);
std::size_t j = 0;
for (; j + vector_size <= OtherColumns; j += vector_size)
{
__m256 cvec = _mm256_loadu_ps(c_row + j);
const __m256 b_vec = _mm256_loadu_ps(b_row + j);
cvec = _mm256_fmadd_ps(b_vec, aik_vec, cvec);
_mm256_storeu_ps(c_row + j, cvec);
}
for (; j < OtherColumns; ++j)
c_row[j] += aik * b_row[j];
}
}
}
else if (std::is_same_v<Type, double>)
{ // double
// ReSharper disable once CppTooWideScopeInitStatement
constexpr std::size_t vector_size = 4;
for (std::size_t i = 0; i < Rows; ++i)
{
Type* c_row = result_mat_data + i * OtherColumns;
for (std::size_t k = 0; k < Columns; ++k)
{
const auto aik = static_cast<double>(this_mat_data[i * Columns + k]);
const __m256d aik_vec = _mm256_set1_pd(aik);
const auto* b_row = reinterpret_cast<const double*>(other_mat_data + k * OtherColumns);
std::size_t j = 0;
for (; j + vector_size <= OtherColumns; j += vector_size)
{
__m256d cvec = _mm256_loadu_pd(c_row + j);
const __m256d b_vec = _mm256_loadu_pd(b_row + j);
cvec = _mm256_fmadd_pd(b_vec, aik_vec, cvec);
_mm256_storeu_pd(c_row + j, cvec);
}
for (; j < OtherColumns; ++j)
c_row[j] += aik * b_row[j];
}
}
}
else
std::unreachable();
return result;
}
#endif
};
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<1, 4, Type, St> mat_row_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x, vector.y, vector.z, 1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<4, 1, Type, St> mat_column_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x}, {vector.y}, {vector.z}, {1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr Mat<4, 4, Type, St> mat_translation(const Vector3<Type>& diff) noexcept
{
return
{
{1, 0, 0, diff.x},
{0, 1, 0, diff.y},
{0, 0, 1, diff.z},
{0, 0, 0, 1},
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr Mat<4, 4, Type, St> mat_scale(const Vector3<Type>& scale) noexcept
{
return {
{scale.x, 0, 0, 0},
{0, scale.y, 0, 0},
{0, 0, scale.z, 0},
{0, 0, 0, 1},
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> mat_rotation_axis_x(const Angle& angle) noexcept
{
return
{
{1, 0, 0, 0},
{0, angle.cos(), -angle.sin(), 0},
{0, angle.sin(), angle.cos(), 0},
{0, 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> mat_rotation_axis_y(const Angle& angle) noexcept
{
return
{
{angle.cos(), 0, angle.sin(), 0},
{0 , 1, 0, 0},
{-angle.sin(), 0, angle.cos(), 0},
{0 , 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> mat_rotation_axis_z(const Angle& angle) noexcept
{
return
{
{angle.cos(), -angle.sin(), 0, 0},
{angle.sin(), angle.cos(), 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
static Mat<4, 4, Type, St> mat_camera_view(const Vector3<Type>& forward, const Vector3<Type>& right,
const Vector3<Type>& up, const Vector3<Type>& camera_origin) noexcept
{
return Mat<4, 4, Type, St>
{
{right.x, right.y, right.z, 0},
{up.x, up.y, up.z, 0},
{forward.x, forward.y, forward.z, 0},
{0, 0, 0, 1},
} * mat_translation<Type, St>(-camera_origin);
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> mat_perspective_left_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, 1.f, 0.f}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> mat_perspective_right_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, -(far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> mat_ortho_left_handed(const Type left, const Type right, const Type bottom, const Type top,
const Type near, const Type far) noexcept
{
return
{
{ static_cast<Type>(2) / (right - left), 0.f, 0.f, -(right + left) / (right - left)},
{ 0.f, static_cast<Type>(2) / (top - bottom), 0.f, -(top + bottom) / (top - bottom)},
{ 0.f, 0.f, static_cast<Type>(2) / (far - near), -(far + near) / (far - near) },
{ 0.f, 0.f, 0.f, 1.f }
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> mat_ortho_right_handed(const Type left, const Type right, const Type bottom, const Type top,
const Type near, const Type far) noexcept
{
return
{
{ static_cast<Type>(2) / (right - left), 0.f, 0.f, -(right + left) / (right - left)},
{ 0.f, static_cast<Type>(2) / (top - bottom), 0.f, -(top + bottom) / (top - bottom)},
{ 0.f, 0.f, -static_cast<Type>(2) / (far - near), -(far + near) / (far - near) },
{ 0.f, 0.f, 0.f, 1.f }
};
}
template<class T = float, MatStoreType St = MatStoreType::COLUMN_MAJOR>
Mat<4, 4, T, St> mat_look_at_left_handed(const Vector3<T>& eye, const Vector3<T>& center, const Vector3<T>& up)
{
const Vector3<T> f = (center - eye).normalized();
const Vector3<T> s = f.cross(up).normalized();
const Vector3<T> u = s.cross(f);
return mat_camera_view<T, St>(f, s, u, eye);
}
template<class T = float, MatStoreType St = MatStoreType::COLUMN_MAJOR>
Mat<4, 4, T, St>mat_look_at_right_handed(const Vector3<T>& eye, const Vector3<T>& center, const Vector3<T>& up)
{
const Vector3<T> f = (center - eye).normalized();
const Vector3<T> s = f.cross(up).normalized();
const Vector3<T> u = s.cross(f);
return mat_camera_view<T, St>(-f, s, u, eye);
}
} // namespace omath
template<size_t Rows, size_t Columns, class Type, omath::MatStoreType StoreType>
struct std::formatter<omath::Mat<Rows, Columns, Type, StoreType>> // NOLINT(*-dcl58-cpp)
{
using MatType = omath::Mat<Rows, Columns, Type, StoreType>;
[[nodiscard]]
static constexpr auto parse(std::format_parse_context& ctx)
{
return ctx.begin();
}
template<class FormatContext>
[[nodiscard]]
static auto format(const MatType& mat, FormatContext& ctx)
{
if constexpr (std::is_same_v<typename FormatContext::char_type, char>)
return std::format_to(ctx.out(), "{}", mat.to_string());
if constexpr (std::is_same_v<typename FormatContext::char_type, wchar_t>)
return std::format_to(ctx.out(), L"{}", mat.to_wstring());
if constexpr (std::is_same_v<typename FormatContext::char_type, char8_t>)
return std::format_to(ctx.out(), u8"{}", mat.to_u8string());
}
};