Files
omath/include/omath/projectile_prediction/proj_pred_engine_legacy.hpp
2025-09-25 19:33:06 +03:00

137 lines
6.4 KiB
C++

//
// Created by Vlad on 6/9/2024.
//
#pragma once
#include "omath/engines/source_engine/traits/pred_engine_trait.hpp"
#include "omath/linear_algebra/vector3.hpp"
#include "omath/projectile_prediction/proj_pred_engine.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include <optional>
namespace omath::projectile_prediction
{
template<class T>
concept PredEngineConcept =
requires(const Projectile& projectile, const Target& target, const Vector3<float>& vec_a,
const Vector3<float>& vec_b,
Vector3<float> v3, // by-value for calc_viewpoint_from_angles
float pitch, float yaw, float time, float gravity, std::optional<float> maybe_pitch) {
// Presence + return types
{
T::predict_projectile_position(projectile, pitch, yaw, time, gravity)
} -> std::same_as<Vector3<float>>;
{ T::predict_target_position(target, time, gravity) } -> std::same_as<Vector3<float>>;
{ T::calc_vector_2d_distance(vec_a) } -> std::same_as<float>;
{ T::get_vector_height_coordinate(vec_b) } -> std::same_as<float>;
{ T::calc_viewpoint_from_angles(projectile, v3, maybe_pitch) } -> std::same_as<Vector3<float>>;
{ T::calc_direct_pitch_angle(vec_a, vec_b) } -> std::same_as<float>;
{ T::calc_direct_yaw_angle(vec_a, vec_b) } -> std::same_as<float>;
// Enforce noexcept as in PredEngineTrait
requires noexcept(T::predict_projectile_position(projectile, pitch, yaw, time, gravity));
requires noexcept(T::predict_target_position(target, time, gravity));
requires noexcept(T::calc_vector_2d_distance(vec_a));
requires noexcept(T::get_vector_height_coordinate(vec_b));
requires noexcept(T::calc_viewpoint_from_angles(projectile, v3, maybe_pitch));
requires noexcept(T::calc_direct_pitch_angle(vec_a, vec_b));
requires noexcept(T::calc_direct_yaw_angle(vec_a, vec_b));
};
template<class EngineTrait = source_engine::PredEngineTrait>
requires PredEngineConcept<EngineTrait>
class ProjPredEngineLegacy final : public ProjPredEngineInterface
{
public:
explicit ProjPredEngineLegacy(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time, const float distance_tolerance)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time), m_distance_tolerance(distance_tolerance)
{
}
[[nodiscard]]
std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const override
{
for (float time = 0.f; time < m_maximum_simulation_time; time += m_simulation_time_step)
{
const auto predicted_target_position =
EngineTrait::predict_target_position(target, time, m_gravity_constant);
const auto projectile_pitch =
maybe_calculate_projectile_launch_pitch_angle(projectile, predicted_target_position);
if (!projectile_pitch.has_value()) [[unlikely]]
continue;
if (!is_projectile_reached_target(predicted_target_position, projectile, projectile_pitch.value(),
time))
continue;
return EngineTrait::calc_viewpoint_from_angles(projectile, predicted_target_position, projectile_pitch);
}
return std::nullopt;
}
private:
const float m_gravity_constant;
const float m_simulation_time_step;
const float m_maximum_simulation_time;
const float m_distance_tolerance;
// Realization of this formula:
// https://stackoverflow.com/questions/54917375/how-to-calculate-the-angle-to-shoot-a-bullet-in-order-to-hit-a-moving-target
/*
\[
\theta \;=\; \arctan\!\Biggl(
\frac{%
v^{2}\;\pm\;\sqrt{\,v^{4}-g\!\left(gx^{2}+2yv^{2}\right)\,}
}{%
gx
}\Biggr)
\]
*/
[[nodiscard]]
std::optional<float>
maybe_calculate_projectile_launch_pitch_angle(const Projectile& projectile,
const Vector3<float>& target_position) const noexcept
{
const auto bullet_gravity = m_gravity_constant * projectile.m_gravity_scale;
if (bullet_gravity == 0.f)
return EngineTrait::calc_direct_pitch_angle(projectile.m_origin, target_position);
const auto delta = target_position - projectile.m_origin;
const auto distance2d = EngineTrait::calc_vector_2d_distance(delta);
const auto distance2d_sqr = distance2d * distance2d;
const auto launch_speed_sqr = projectile.m_launch_speed * projectile.m_launch_speed;
float root = launch_speed_sqr * launch_speed_sqr
- bullet_gravity
* (bullet_gravity * distance2d_sqr
+ 2.0f * EngineTrait::get_vector_height_coordinate(delta) * launch_speed_sqr);
if (root < 0.0f) [[unlikely]]
return std::nullopt;
root = std::sqrt(root);
const float angle = std::atan((launch_speed_sqr - root) / (bullet_gravity * distance2d));
return angles::radians_to_degrees(angle);
}
[[nodiscard]]
bool is_projectile_reached_target(const Vector3<float>& target_position, const Projectile& projectile,
const float pitch, const float time) const noexcept
{
const auto yaw = EngineTrait::calc_direct_yaw_angle(projectile.m_origin, target_position);
const auto projectile_position =
EngineTrait::predict_projectile_position(projectile, pitch, yaw, time, m_gravity_constant);
return projectile_position.distance_to(target_position) <= m_distance_tolerance;
}
};
} // namespace omath::projectile_prediction