Merge pull request #66 from orange-cpp/feature/remove-legacy

Removes deprecated Matrix class
This commit is contained in:
2025-09-08 19:59:34 +03:00
committed by GitHub
3 changed files with 0 additions and 675 deletions

View File

@@ -1,127 +0,0 @@
#pragma once
/*
THIS CODE IS DEPRECATED NEVER EVER USE Matrix CLASS
AND VERY SLOW USE Mat INSTEAD!!!!!!!!!!!
⠛⠛⣿⣿⣿⣿⣿⡷⢶⣦⣶⣶⣤⣤⣤⣀⠀⠀⠀
⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⡀⠀
⠀⠀⠀⠉⠉⠉⠙⠻⣿⣿⠿⠿⠛⠛⠛⠻⣿⣿⣇⠀
⠀⠀⢤⣀⣀⣀⠀⠀⢸⣷⡄⠀⣁⣀⣤⣴⣿⣿⣿⣆
⠀⠀⠀⠀⠹⠏⠀⠀⠀⣿⣧⠀⠹⣿⣿⣿⣿⣿⡿⣿
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠛⠿⠇⢀⣼⣿⣿⠛⢯⡿⡟
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠦⠴⢿⢿⣿⡿⠷⠀⣿⠀
⠀⠀⠀⠀⠀⠀⠀⠙⣷⣶⣶⣤⣤⣤⣤⣤⣶⣦⠃⠀
⠀⠀⠀⠀⠀⠀⠀⢐⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠈⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⢿⣿⣿⣿⣿⠟⠁
*/
#ifdef OMATH_ENABLE_LEGACY
#include "omath/vector3.hpp"
#include <initializer_list>
#include <memory>
#include <string>
namespace omath
{
class Matrix final
{
public:
Matrix();
Matrix(size_t rows, size_t columns);
Matrix(const std::initializer_list<std::initializer_list<float>>& rows);
[[nodiscard]]
static Matrix to_screen_matrix(float screen_width, float screen_height);
[[nodiscard]]
static Matrix translation_matrix(const Vector3<float>& diff);
[[nodiscard]]
static Matrix orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up);
[[nodiscard]]
static Matrix projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
Matrix(const Matrix& other);
Matrix(size_t rows, size_t columns, const float* raw_data);
Matrix(Matrix&& other) noexcept;
[[nodiscard]]
size_t row_count() const noexcept;
[[nodiscard]]
float& operator[](size_t row, size_t column);
[[nodiscard]]
size_t columns_count() const noexcept;
[[nodiscard]]
std::pair<size_t, size_t> size() const noexcept;
[[nodiscard]]
float& at(size_t row, size_t col);
[[nodiscard]]
float sum();
void set_data_from_raw(const float* raw_matrix);
[[nodiscard]]
Matrix transpose() const;
void set(float val);
[[nodiscard]]
const float& at(size_t row, size_t col) const;
Matrix operator*(const Matrix& other) const;
Matrix& operator*=(const Matrix& other);
Matrix operator*(float f) const;
Matrix& operator*=(float f);
Matrix& operator/=(float f);
void clear();
[[nodiscard]]
Matrix strip(size_t row, size_t column) const;
[[nodiscard]]
float minor(size_t i, size_t j) const;
[[nodiscard]]
float alg_complement(size_t i, size_t j) const;
[[nodiscard]]
float determinant() const;
[[nodiscard]]
const float* raw() const;
Matrix& operator=(const Matrix& other);
Matrix& operator=(Matrix&& other) noexcept;
Matrix operator/(float f) const;
[[nodiscard]]
std::string to_string() const;
~Matrix();
private:
size_t m_rows;
size_t m_columns;
std::unique_ptr<float[]> m_data;
};
} // namespace omath
#endif

View File

@@ -1,364 +0,0 @@
#ifdef OMATH_ENABLE_LEGACY
#include "omath/matrix.hpp"
#include "omath/angles.hpp"
#include "omath/vector3.hpp"
#include <complex>
#include <format>
#include <stdexcept>
#include <utility>
namespace omath
{
Matrix::Matrix(const size_t rows, const size_t columns)
{
if (rows == 0 and columns == 0)
throw std::runtime_error("Matrix cannot be 0x0");
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
set(0.f);
}
Matrix::Matrix(const std::initializer_list<std::initializer_list<float>>& rows)
{
m_rows = rows.size();
m_columns = rows.begin()->size();
for (const auto& row: rows)
if (row.size() != m_columns)
throw std::invalid_argument("All rows must have the same number of columns.");
m_data = std::make_unique<float[]>(m_rows * m_columns);
size_t i = 0;
for (const auto& row: rows)
{
size_t j = 0;
for (const auto& value: row)
at(i, j++) = value;
++i;
}
}
Matrix::Matrix(const Matrix& other)
{
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
at(i, j) = other.at(i, j);
}
Matrix::Matrix(const size_t rows, const size_t columns, const float* raw_data)
{
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < rows * columns; ++i)
at(i / rows, i % columns) = raw_data[i];
}
size_t Matrix::row_count() const noexcept
{
return m_rows;
}
float& Matrix::operator[](const size_t row, const size_t column)
{
return at(row, column);
}
Matrix::Matrix(Matrix&& other) noexcept
{
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::move(other.m_data);
other.m_rows = 0;
other.m_columns = 0;
other.m_data = nullptr;
}
size_t Matrix::columns_count() const noexcept
{
return m_columns;
}
std::pair<size_t, size_t> Matrix::size() const noexcept
{
return {row_count(), columns_count()};
}
float& Matrix::at(const size_t row, const size_t col)
{
return const_cast<float&>(std::as_const(*this).at(row, col));
}
float Matrix::sum()
{
float sum = 0;
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
sum += at(i, j);
return sum;
}
const float& Matrix::at(const size_t row, const size_t col) const
{
return m_data[row * m_columns + col];
}
Matrix Matrix::operator*(const Matrix& other) const
{
if (m_columns != other.m_rows)
throw std::runtime_error("n != m");
auto out_mat = Matrix(m_rows, other.m_columns);
for (size_t d = 0; d < m_rows; ++d)
for (size_t i = 0; i < other.m_columns; ++i)
for (size_t j = 0; j < other.m_rows; ++j)
out_mat.at(d, i) += at(d, j) * other.at(j, i);
return out_mat;
}
Matrix& Matrix::operator*=(const Matrix& other)
{
*this = *this * other;
return *this;
}
Matrix Matrix::operator*(const float f) const
{
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.at(i, j) *= f;
return out;
}
Matrix& Matrix::operator*=(const float f)
{
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
at(i, j) *= f;
return *this;
}
void Matrix::clear()
{
set(0.f);
}
Matrix& Matrix::operator=(const Matrix& other)
{
if (this == &other)
return *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
at(i, j) = other.at(i, j);
return *this;
}
Matrix& Matrix::operator=(Matrix&& other) noexcept
{
if (this == &other)
return *this;
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::move(other.m_data);
other.m_rows = 0;
other.m_columns = 0;
return *this;
}
Matrix& Matrix::operator/=(const float f)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
at(i, j) /= f;
return *this;
}
Matrix Matrix::operator/(const float f) const
{
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.at(i, j) /= f;
return out;
}
std::string Matrix::to_string() const
{
std::string str;
for (size_t i = 0; i < m_rows; i++)
{
for (size_t j = 0; j < m_columns; ++j)
{
str += std::format("{:.1f}", at(i, j));
if (j == m_columns - 1)
str += '\n';
else
str += ' ';
}
}
return str;
}
float Matrix::determinant() const // NOLINT(*-no-recursion)
{
if (m_rows + m_columns == 2)
return at(0, 0);
if (m_rows == 2 and m_columns == 2)
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
float det = 0;
for (size_t i = 0; i < m_columns; i++)
det += alg_complement(0, i) * at(0, i);
return det;
}
float Matrix::alg_complement(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
const auto tmp = minor(i, j);
return ((i + j + 2) % 2 == 0) ? tmp : -tmp;
}
Matrix Matrix::transpose() const
{
Matrix transposed = {m_columns, m_rows};
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
transposed.at(j, i) = at(i, j);
return transposed;
}
Matrix::~Matrix() = default;
void Matrix::set(const float val)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
at(i, j) = val;
}
Matrix Matrix::strip(const size_t row, const size_t column) const
{
Matrix stripped = {m_rows - 1, m_columns - 1};
size_t strip_row_index = 0;
for (size_t i = 0; i < m_rows; i++)
{
if (i == row)
continue;
size_t strip_column_index = 0;
for (size_t j = 0; j < m_columns; ++j)
{
if (j == column)
continue;
stripped.at(strip_row_index, strip_column_index) = at(i, j);
strip_column_index++;
}
strip_row_index++;
}
return stripped;
}
float Matrix::minor(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
return strip(i, j).determinant();
}
Matrix Matrix::to_screen_matrix(const float screen_width, const float screen_height)
{
return {
{screen_width / 2.f, 0.f, 0.f, 0.f},
{0.f, -screen_height / 2.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{screen_width / 2.f, screen_height / 2.f, 0.f, 1.f},
};
}
Matrix Matrix::translation_matrix(const Vector3<float>& diff)
{
return {
{1.f, 0.f, 0.f, 0.f},
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{diff.x, diff.y, diff.z, 1.f},
};
}
Matrix Matrix::orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up)
{
return {
{right.x, up.x, forward.x, 0.f},
{right.y, up.y, forward.y, 0.f},
{right.z, up.z, forward.z, 0.f},
{0.f, 0.f, 0.f, 1.f},
};
}
Matrix Matrix::projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), 2.f * near * far / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}
const float* Matrix::raw() const
{
return m_data.get();
}
void Matrix::set_data_from_raw(const float* raw_matrix)
{
for (size_t i = 0; i < m_columns * m_rows; ++i)
at(i / m_rows, i % m_columns) = raw_matrix[i];
}
Matrix::Matrix()
{
m_columns = 0;
m_rows = 0;
m_data = nullptr;
}
} // namespace omath
#endif

View File

@@ -1,184 +0,0 @@
//
// Created by vlad on 5/18/2024.
//
#ifdef OMATH_ENABLE_LEGACY
#include <gtest/gtest.h>
#include <omath/matrix.hpp>
#include "omath/vector3.hpp"
using namespace omath;
class UnitTestMatrix : public ::testing::Test
{
protected:
Matrix m1;
Matrix m2;
void SetUp() override
{
m1 = Matrix(2, 2);
m2 = Matrix{{1.0f, 2.0f}, {3.0f, 4.0f}};
}
};
// Test constructors
TEST_F(UnitTestMatrix, Constructor_Size)
{
const Matrix m(3, 3);
EXPECT_EQ(m.row_count(), 3);
EXPECT_EQ(m.columns_count(), 3);
}
TEST_F(UnitTestMatrix, Operator_SquareBrackets)
{
EXPECT_EQ((m2[0, 0]), 1.0f);
EXPECT_EQ((m2[0, 1]), 2.0f);
EXPECT_EQ((m2[1, 0]), 3.0f);
EXPECT_EQ((m2[1, 1]), 4.0f);
}
TEST_F(UnitTestMatrix, Constructor_InitializerList)
{
Matrix m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.row_count(), 2);
EXPECT_EQ(m.columns_count(), 2);
EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f);
}
TEST_F(UnitTestMatrix, Constructor_Copy)
{
Matrix m3 = m2;
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, Constructor_Move)
{
Matrix m3 = std::move(m2);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}
// Test matrix operations
TEST_F(UnitTestMatrix, Operator_Multiplication_Matrix)
{
Matrix m3 = m2 * m2;
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f);
}
TEST_F(UnitTestMatrix, Operator_Multiplication_Scalar)
{
Matrix m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f);
}
TEST_F(UnitTestMatrix, Operator_Division_Scalar)
{
Matrix m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMatrix, Transpose)
{
Matrix m3 = m2.transpose();
EXPECT_FLOAT_EQ(m3.at(0, 1), 3.0f);
EXPECT_FLOAT_EQ(m3.at(1, 0), 2.0f);
}
TEST_F(UnitTestMatrix, Determinant)
{
const float det = m2.determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMatrix, Minor)
{
const float minor = m2.minor(0, 0);
EXPECT_FLOAT_EQ(minor, 4.0f);
}
TEST_F(UnitTestMatrix, AlgComplement)
{
const float algComp = m2.alg_complement(0, 0);
EXPECT_FLOAT_EQ(algComp, 4.0f);
}
TEST_F(UnitTestMatrix, Strip)
{
Matrix m3 = m2.strip(0, 0);
EXPECT_EQ(m3.row_count(), 1);
EXPECT_EQ(m3.columns_count(), 1);
EXPECT_FLOAT_EQ(m3.at(0, 0), 4.0f);
}
TEST_F(UnitTestMatrix, ProjectionMatrix)
{
const Matrix proj = Matrix::projection_matrix(45.0f, 1.33f, 0.1f, 100.0f);
EXPECT_EQ(proj.row_count(), 4);
EXPECT_EQ(proj.columns_count(), 4);
// Further checks on projection matrix elements could be added
}
// Test other member functions
TEST_F(UnitTestMatrix, Set)
{
m1.set(3.0f);
EXPECT_FLOAT_EQ(m1.at(0, 0), 3.0f);
EXPECT_FLOAT_EQ(m1.at(1, 1), 3.0f);
}
TEST_F(UnitTestMatrix, Sum)
{
const float sum = m2.sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMatrix, Clear)
{
m2.clear();
EXPECT_FLOAT_EQ(m2.at(0, 0), 0.0f);
EXPECT_FLOAT_EQ(m2.at(1, 1), 0.0f);
}
TEST_F(UnitTestMatrix, ToString)
{
const std::string str = m2.to_string();
EXPECT_FALSE(str.empty());
}
// Test assignment operators
TEST_F(UnitTestMatrix, AssignmentOperator_Copy)
{
Matrix m3(2, 2);
m3 = m2;
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, AssignmentOperator_Move)
{
Matrix m3(2, 2);
m3 = std::move(m2);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}
#endif