Compare commits

...

24 Commits

Author SHA1 Message Date
30eef59360 Update cmake-multi-platform.yml
switched to clang

Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
added runtime dir

fix
2025-05-03 22:51:46 +03:00
c2a6cf5c47 Merge pull request #43 from orange-cpp/orange-cpp-ci
Create cmake-multi-platform.yml
2025-05-03 22:04:37 +03:00
7f55383bc1 Create cmake-multi-platform.yml 2025-05-03 22:04:10 +03:00
449c60133c bugfix 2025-05-03 21:36:16 +03:00
31d3359507 Merge pull request #42 from orange-cpp/feature/new-codestyle
Feature/new codestyle
2025-05-03 20:59:06 +03:00
dd738f365d fix 2025-05-03 20:51:50 +03:00
b5e788385d fixed style 2025-05-03 20:38:58 +03:00
df6d75e554 changed code style 2025-05-03 20:31:59 +03:00
be3fae63b8 patched clang format 2025-05-03 16:50:29 +03:00
dd731b60c3 updated clang format 2025-05-03 16:39:38 +03:00
b06fd00673 Merge pull request #41 from orange-cpp/u/improved-cmake
improved cmake, removed useless cmake files
2025-04-30 21:31:34 +03:00
998c8f3a43 improved cmake, removed useless cmake files 2025-04-30 21:26:25 +03:00
faeef594b9 moved installation stuff to INSTALL.md 2025-04-30 18:15:46 +03:00
40a301186e Merge pull request #40 from orange-cpp/u/orange/inverted-matrix
U/orange/inverted matrix
2025-04-29 20:53:02 +03:00
a41526c494 style fix 2025-04-29 20:52:41 +03:00
a0d1dc4313 added test case 2025-04-29 20:49:59 +03:00
1c5c9360c8 added inverse method 2025-04-29 20:33:39 +03:00
4615769682 added additional methods 2025-04-29 20:10:17 +03:00
4ef674f7b4 fixed infinite recursion in compile time 2025-04-29 20:08:27 +03:00
69b9049fb0 fixed gimba lock for unity 2025-04-26 00:52:46 +03:00
2734b58bdd fixed gimba lock for opengl camera 2025-04-26 00:32:53 +03:00
d7f1f49165 resetting state 2025-04-25 23:52:10 +03:00
94b1453cae removed .idea folder 2025-04-23 02:48:45 +03:00
3e67d8a99c added credits 2025-04-23 02:46:08 +03:00
91 changed files with 1548 additions and 1495 deletions

View File

@@ -1,62 +1,64 @@
# Generated from CLion C/C++ Code Style settings
---
Language: Cpp
# Generated by CLion for Stroustrup
# The Stroustrup style, named after Bjarne Stroustrup, the creator of C++, is similar to the K&R style but differs
# in its treatment of the class definitions and the placement of braces in certain contexts. The opening brace is
# placed on the same line as the control statement, and the closing brace is on its own line.
BasedOnStyle: LLVM
AccessModifierOffset: -4
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignOperands: true
AlignConsecutiveAssignments: None
AlignConsecutiveBitFields: None
AlignConsecutiveDeclarations: None
AlignConsecutiveMacros: AcrossEmptyLinesAndComments
AlignTrailingComments: false
AllowShortBlocksOnASingleLine: false
AllowShortBlocksOnASingleLine: Never
AllowShortFunctionsOnASingleLine: None
AlwaysBreakTemplateDeclarations: Yes
BraceWrapping:
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
BreakTemplateDeclarations: Leave
BreakBeforeBraces: Custom
BraceWrapping:
AfterCaseLabel: true
AfterClass: true
AfterControlStatement: true
AfterEnum: true
AfterFunction: true
AfterControlStatement: true
SplitEmptyFunction: true
AfterEnum: true
AfterNamespace: true
AfterStruct: true
AfterUnion: true
AfterExternBlock: true
BeforeCatch: false
BeforeElse: false
BeforeCatch: true
BeforeElse: true
BeforeLambdaBody: true
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: true
BeforeWhile: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBraces: Custom
BreakConstructorInitializers: AfterColon
BreakConstructorInitializersBeforeComma: false
BreakBeforeBinaryOperators: All
BreakBeforeConceptDeclarations: false
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ContinuationIndentWidth: 8
IncludeCategories:
- Regex: '^<.*'
Priority: 1
- Regex: '^".*'
Priority: 2
- Regex: '.*'
Priority: 3
IncludeIsMainRegex: '([-_](test|unittest))?$'
IndentCaseLabels: true
IncludeBlocks: Merge
IndentExternBlock: Indent
IndentRequiresClause: false
IndentWidth: 4
InsertNewlineAtEOF: true
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 2
ContinuationIndentWidth: 8
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: true
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpaceBeforeCtorInitializerColon: false
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
AfterControlStatements: true
AfterFunctionDeclarationName: false
AfterFunctionDefinitionName: false
AfterForeachMacros: true
AfterIfMacros: true
AfterOverloadedOperator: false
BeforeNonEmptyParentheses: false
SpaceBeforeRangeBasedForLoopColon: false
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
TabWidth: 4
...
SpacesInConditionalStatement: false
SpacesInContainerLiterals: false
SpacesInParentheses: false

View File

@@ -0,0 +1,79 @@
name: Omath CI (Arch Linux / Windows)
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
concurrency:
group: ci-${{ github.ref }}
cancel-in-progress: true
##############################################################################
# 1) ARCH LINUX Clang / Ninja
##############################################################################
jobs:
arch-build-and-test:
name: Arch Linux (Clang)
runs-on: ubuntu-latest
container: archlinux:latest
steps:
- name: Install basic tool-chain with pacman
shell: bash
run: |
pacman -Sy --noconfirm archlinux-keyring
pacman -Syu --noconfirm --needed \
git base-devel clang cmake ninja
- name: Checkout repository (with sub-modules)
uses: actions/checkout@v4
with:
submodules: recursive
- name: Configure (cmake --preset)
shell: bash
run: cmake --preset linux-release -DOMATH_BUILD_TESTS=ON
- name: Build
shell: bash
run: cmake --build cmake-build/build/linux-release --target all
- name: Run unit_tests
shell: bash
run: ./out/Release/unit_tests
##############################################################################
# 2) Windows MSVC / Ninja
##############################################################################
windows-build-and-test:
name: Windows (MSVC)
runs-on: windows-latest
steps:
- name: Checkout repository (with sub-modules)
uses: actions/checkout@v4
with:
submodules: recursive
- name: Install Ninja
uses: seanmiddleditch/gha-setup-ninja@v4
- name: Set up MSVC developer command-prompt
uses: ilammy/msvc-dev-cmd@v1
- name: Configure (cmake --preset)
shell: bash
run: cmake --preset windows-release -DOMATH_BUILD_TESTS=ON
- name: Build
shell: bash
run: cmake --build cmake-build/build/windows-release --target all
- name: Run unit_tests.exe
shell: bash
run: ./out/Release/unit_tests.exe

8
.idea/modules.xml generated
View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/uml.iml" filepath="$PROJECT_DIR$/.idea/uml.iml" />
</modules>
</component>
</project>

2
.idea/uml.iml generated
View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module classpath="CMake" type="CPP_MODULE" version="4" />

7
.idea/vcs.xml generated
View File

@@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
<mapping directory="$PROJECT_DIR$/extlibs/googletest" vcs="Git" />
</component>
</project>

View File

@@ -11,15 +11,19 @@ option(OMATH_BUILD_AS_SHARED_LIBRARY "Build Omath as .so or .dll" OFF)
option(OMATH_USE_AVX2 "Omath will use AVX2 to boost performance" ON)
option(OMATH_IMGUI_INTEGRATION "Omath will define method to convert omath types to imgui types" OFF)
option(OMATH_BUILD_EXAMPLES "Build example projects with you can learn & play" OFF)
option(OMATH_STATIC_MSVC_RUNTIME_LIBRARY "Force Omath to link static runtime" OFF)
option(OMATH_STATIC_MSVC_RUNTIME_LIBRARY "Force Omath to link static runtime" OFF)
option(OMATH_SUPRESS_SAFETY_CHECKS "Supress some safety checks in release build to improve general performance" ON)
option(OMATH_USE_UNITY_BUILD "Will enable unity build to speed up compilation" ON)
file(GLOB_RECURSE OMATH_SOURCES CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/source/*.cpp")
file(GLOB_RECURSE OMATH_HEADERS CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/include/*.hpp")
if (OMATH_BUILD_AS_SHARED_LIBRARY)
add_library(omath SHARED source/matrix.cpp)
else()
add_library(omath STATIC source/matrix.cpp)
endif()
add_library(omath SHARED ${OMATH_SOURCES} ${OMATH_HEADERS})
else ()
add_library(omath STATIC ${OMATH_SOURCES} ${OMATH_HEADERS})
endif ()
message(STATUS "Building on ${CMAKE_HOST_SYSTEM_NAME}")
add_library(omath::omath ALIAS omath)
@@ -28,28 +32,28 @@ if (OMATH_IMGUI_INTEGRATION)
target_compile_definitions(omath PUBLIC OMATH_IMGUI_INTEGRATION)
# IMGUI is being linked as submodule
if(TARGET imgui)
if (TARGET imgui)
target_link_libraries(omath PUBLIC imgui)
install(TARGETS imgui
EXPORT omathTargets
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
else()
else ()
# Assume that IMGUI linked via VCPKG.
find_package(imgui CONFIG REQUIRED)
target_link_libraries(omath PUBLIC imgui::imgui)
endif()
endif ()
endif()
endif ()
if (OMATH_USE_AVX2)
target_compile_definitions(omath PUBLIC OMATH_USE_AVX2)
endif()
endif ()
if (OMATH_SUPRESS_SAFETY_CHECKS)
target_compile_definitions(omath PUBLIC OMATH_SUPRESS_SAFETY_CHECKS)
endif()
endif ()
set_target_properties(omath PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
@@ -61,37 +65,35 @@ if (OMATH_USE_UNITY_BUILD)
set_target_properties(omath PROPERTIES
UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 20)
endif()
endif ()
if (OMATH_STATIC_MSVC_RUNTIME_LIBRARY)
set_target_properties(omath PROPERTIES
MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>"
)
endif()
endif ()
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
target_compile_options(omath PRIVATE -mavx2 -mfma)
endif()
endif ()
target_compile_features(omath PUBLIC cxx_std_23)
add_subdirectory(source)
if(OMATH_BUILD_TESTS)
if (OMATH_BUILD_TESTS)
add_subdirectory(extlibs)
add_subdirectory(tests)
endif()
endif ()
if (OMATH_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
endif ()
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC" AND OMATH_THREAT_WARNING_AS_ERROR)
target_compile_options(omath PRIVATE /W4 /WX)
elseif(OMATH_THREAT_WARNING_AS_ERROR)
elseif (OMATH_THREAT_WARNING_AS_ERROR)
target_compile_options(omath PRIVATE -Wall -Wextra -Wpedantic -Werror)
endif()
endif ()
target_include_directories(omath
PUBLIC

View File

@@ -40,8 +40,8 @@
"binaryDir": "${sourceDir}/cmake-build/build/${presetName}",
"installDir": "${sourceDir}/cmake-build/install/${presetName}",
"cacheVariables": {
"CMAKE_C_COMPILER": "gcc",
"CMAKE_CXX_COMPILER": "g++"
"CMAKE_C_COMPILER": "clang",
"CMAKE_CXX_COMPILER": "clang++"
},
"condition": {
"type": "equals",

11
CREDITS.md Normal file
View File

@@ -0,0 +1,11 @@
# OMATH CREDITS
Thanks to everyone who made this possible, including:
- Saikari aka luadebug for VCPKG port.
And a big hand to everyone else who has contributed over the past!
THANKS! <3
-- Orange++ <orange-cpp@yandex.ru>

54
INSTALL.md Normal file
View File

@@ -0,0 +1,54 @@
# 📥Installation Guide
## <img width="28px" src="https://vcpkg.io/assets/mark/mark.svg" /> Using vcpkg
**Note**: Support vcpkg for package management
1. Install [vcpkg](https://github.com/microsoft/vcpkg)
2. Run the following command to install the orange-math package:
```
vcpkg install orange-math
```
CMakeLists.txt
```cmake
find_package(omath CONFIG REQUIRED)
target_link_libraries(main PRIVATE omath::omath)
```
For detailed commands on installing different versions and more information, please refer to Microsoft's [official instructions](https://learn.microsoft.com/en-us/vcpkg/get_started/overview).
## <img width="28px" src="https://upload.wikimedia.org/wikipedia/commons/e/ef/CMake_logo.svg?" /> Build from source using CMake
1. **Preparation**
Install needed tools: cmake, clang, git, msvc (windows only).
1. **Linux:**
```bash
sudo pacman -Sy cmake ninja clang git
```
2. **MacOS:**
```bash
brew install llvm git cmake ninja
```
3. **Windows:**
Install Visual Studio from [here](https://visualstudio.microsoft.com/downloads/) and Git from [here](https://git-scm.com/downloads).
Use x64 Native Tools shell to execute needed commands down below.
2. **Clone the repository:**
```bash
git clone https://github.com/orange-cpp/omath.git
```
3. **Navigate to the project directory:**
```bash
cd omath
```
4. **Build the project using CMake:**
```bash
cmake --preset windows-release -S .
cmake --build cmake-build/build/windows-release --target omath -j 6
```
Use **\<platform\>-\<build configuration\>** preset to build siutable version for yourself. Like **windows-release** or **linux-release**.
| Platform Name | Build Config |
|---------------|---------------|
| windows | release/debug |
| linux | release/debug |
| darwin | release/debug |

View File

@@ -37,40 +37,9 @@ Oranges's Math Library (omath) is a comprehensive, open-source library aimed at
| Linux | ✅YES |
| Darwin (MacOS) | ✅YES |
## ⏬ Getting Started
### Prerequisites
- C++ Compiler
- CMake (for building the project)
## ⏬ Installation
Please read our [installation guide](https://github.com/orange-cpp/omath/blob/main/INSTALL.md). If this link doesn't work check out INSTALL.md file.
### Installation
### vcpkg
**Note**: Support vcpkg for package management
1. Install vcpkg (https://github.com/microsoft/vcpkg)
2. Run the following command to install the orange-math package:
```
vcpkg install orange-math
```
CMakeLists.txt
```cmake
find_package(omath CONFIG REQUIRED)
target_link_libraries(main PRIVATE omath::omath)
```
For detailed commands on installing different versions and more information, please refer to Microsoft's official instructions (https://learn.microsoft.com/en-us/vcpkg/get_started/overview)
### Build from source
1. Clone the repository:
```
git clone https://github.com/orange-cpp/omath.git
```
2. Navigate to the project directory:
```
cd omath
```
3. Build the project using CMake:
```
cmake --preset windows-release -S .
cmake --build cmake-build/build/windows-release --target omath -j 6
```
Use **\<platform\>-\<build configuration\>** preset to build siutable version for yourself. Like **windows-release** or **linux-release**.
## ❔ Usage
Simple world to screen function
```c++

View File

@@ -11,7 +11,7 @@
namespace omath::primitives
{
[[nodiscard]]
std::array<Triangle<Vector3<float>>, 12> CreateBox(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dirForward, const Vector3<float>& dirRight,
std::array<Triangle<Vector3<float>>, 12> create_box(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dir_forward, const Vector3<float>& dir_right,
float ratio = 4.f);
}

View File

@@ -3,10 +3,9 @@
//
#pragma once
#include "omath/angles.hpp"
#include <algorithm>
#include <utility>
#include "omath/angles.hpp"
namespace omath
{
@@ -17,14 +16,14 @@ namespace omath
};
template<class Type = float, Type min = Type(0), Type max = Type(360), AngleFlags flags = AngleFlags::Normalized>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Angle
{
Type m_angle;
constexpr explicit Angle(const Type& degrees)
{
if constexpr (flags == AngleFlags::Normalized)
m_angle = angles::WrapAngle(degrees, min, max);
m_angle = angles::wrap_angle(degrees, min, max);
else if constexpr (flags == AngleFlags::Clamped)
m_angle = std::clamp(degrees, min, max);
@@ -37,17 +36,17 @@ namespace omath
public:
[[nodiscard]]
constexpr static Angle FromDegrees(const Type& degrees)
constexpr static Angle from_degrees(const Type& degrees)
{
return Angle{degrees};
}
constexpr Angle() : m_angle(0)
constexpr Angle(): m_angle(0)
{
}
[[nodiscard]]
constexpr static Angle FromRadians(const Type& degrees)
constexpr static Angle from_radians(const Type& degrees)
{
return Angle{angles::RadiansToDegrees<Type>(degrees)};
return Angle{angles::radians_to_degrees<Type>(degrees)};
}
[[nodiscard]]
@@ -57,51 +56,51 @@ namespace omath
}
[[nodiscard]]
constexpr Type AsDegrees() const
constexpr Type as_degrees() const
{
return m_angle;
}
[[nodiscard]]
constexpr Type AsRadians() const
constexpr Type as_radians() const
{
return angles::DegreesToRadians(m_angle);
return angles::degrees_to_radians(m_angle);
}
[[nodiscard]]
Type Sin() const
Type sin() const
{
return std::sin(AsRadians());
return std::sin(as_radians());
}
[[nodiscard]]
Type Cos() const
Type cos() const
{
return std::cos(AsRadians());
return std::cos(as_radians());
}
[[nodiscard]]
Type Tan() const
Type tan() const
{
return std::tan(AsRadians());
return std::tan(as_radians());
}
[[nodiscard]]
Type Atan() const
Type atan() const
{
return std::atan(AsRadians());
return std::atan(as_radians());
}
[[nodiscard]]
Type Cot() const
Type cot() const
{
return Cos() / Sin();
return cos() / sin();
}
constexpr Angle& operator+=(const Angle& other)
{
if constexpr (flags == AngleFlags::Normalized)
m_angle = angles::WrapAngle(m_angle + other.m_angle, min, max);
m_angle = angles::wrap_angle(m_angle + other.m_angle, min, max);
else if constexpr (flags == AngleFlags::Clamped)
m_angle = std::clamp(m_angle + other.m_angle, min, max);
@@ -115,7 +114,8 @@ namespace omath
}
[[nodiscard]]
constexpr std::partial_ordering operator<=>(const Angle& other) const = default;
constexpr std::partial_ordering operator<=>(const Angle& other) const
= default;
constexpr Angle& operator-=(const Angle& other)
{
@@ -126,7 +126,7 @@ namespace omath
constexpr Angle& operator+(const Angle& other)
{
if constexpr (flags == AngleFlags::Normalized)
return {angles::WrapAngle(m_angle + other.m_angle, min, max)};
return {angles::wrap_angle(m_angle + other.m_angle, min, max)};
else if constexpr (flags == AngleFlags::Clamped)
return {std::clamp(m_angle + other.m_angle, min, max)};

View File

@@ -10,54 +10,55 @@ namespace omath::angles
{
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] constexpr Type RadiansToDegrees(const Type& radians)
[[nodiscard]] constexpr Type radians_to_degrees(const Type& radians)
{
return radians * (Type(180) / std::numbers::pi_v<Type>);
return radians * (static_cast<Type>(180) / std::numbers::pi_v<Type>);
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] constexpr Type DegreesToRadians(const Type& degrees)
[[nodiscard]] constexpr Type degrees_to_radians(const Type& degrees)
{
return degrees * (std::numbers::pi_v<Type> / Type(180));
}
template<class type>
requires std::is_floating_point_v<type>
[[nodiscard]] type HorizontalFovToVertical(const type& horFov, const type& aspect)
{
const auto fovRad = DegreesToRadians(horFov);
const auto vertFov = type(2) * std::atan(std::tan(fovRad / type(2)) / aspect);
return RadiansToDegrees(vertFov);
return degrees * (std::numbers::pi_v<Type> / static_cast<Type>(180));
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] Type VerticalFovToHorizontal(const Type& vertFov, const Type& aspect)
[[nodiscard]] Type horizontal_fov_to_vertical(const Type& horizontal_fov, const Type& aspect)
{
const auto fovRad = DegreesToRadians(vertFov);
const auto fov_rad = degrees_to_radians(horizontal_fov);
const auto horFov = Type(2) * std::atan(std::tan(fovRad / Type(2)) * aspect);
const auto vert_fov = static_cast<Type>(2) * std::atan(std::tan(fov_rad / static_cast<Type>(2)) / aspect);
return RadiansToDegrees(horFov);
return radians_to_degrees(vert_fov);
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] Type vertical_fov_to_horizontal(const Type& vertical_fov, const Type& aspect)
{
const auto fov_as_radians = degrees_to_radians(vertical_fov);
const auto horizontal_fov
= static_cast<Type>(2) * std::atan(std::tan(fov_as_radians / static_cast<Type>(2)) * aspect);
return radians_to_degrees(horizontal_fov);
}
template<class Type>
requires std::is_arithmetic_v<Type>
[[nodiscard]] Type WrapAngle(const Type& angle, const Type& min, const Type& max)
[[nodiscard]] Type wrap_angle(const Type& angle, const Type& min, const Type& max)
{
if (angle <= max && angle >= min)
return angle;
const Type range = max - min;
Type wrappedAngle = std::fmod(angle - min, range);
Type wrapped_angle = std::fmod(angle - min, range);
if (wrappedAngle < 0)
wrappedAngle += range;
if (wrapped_angle < 0)
wrapped_angle += range;
return wrappedAngle + min;
return wrapped_angle + min;
}
}
} // namespace omath::angles

View File

@@ -14,25 +14,24 @@ namespace omath::collision
Vector3<float> start;
Vector3<float> end;
bool infinite_length = false;
[[nodiscard]]
Vector3<float> DirectionVector() const;
[[nodiscard]]
Vector3<float> DirectionVectorNormalized() const;
Vector3<float> direction_vector() const;
[[nodiscard]]
Vector3<float> direction_vector_normalized() const;
};
class LineTracer
{
public:
LineTracer() = delete;
[[nodiscard]]
static bool CanTraceLine(const Ray& ray, const Triangle<Vector3<float>>& triangle);
static bool can_trace_line(const Ray& ray, const Triangle<Vector3<float>>& triangle);
// Realization of MöllerTrumbore intersection algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
[[nodiscard]]
static Vector3<float> GetRayHitPoint(const Ray& ray, const Triangle<Vector3<float>>& triangle);
static Vector3<float> get_ray_hit_point(const Ray& ray, const Triangle<Vector3<float>>& triangle);
};
}
} // namespace omath::collision

View File

@@ -4,95 +4,93 @@
#pragma once
#include <cstdint>
#include "omath/vector3.hpp"
#include "omath/vector4.hpp"
#include <cstdint>
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
namespace omath
{
struct HSV
struct Hsv
{
float hue{};
float saturation{};
float value{};
};
class Color final : public Vector4<float>
{
public:
constexpr Color(const float r, const float g, const float b, const float a) : Vector4(r, g, b, a)
constexpr Color(const float r, const float g, const float b, const float a): Vector4(r, g, b, a)
{
Clamp(0.f, 1.f);
clamp(0.f, 1.f);
}
constexpr explicit Color() = default;
[[nodiscard]]
constexpr static Color FromRGBA(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t a)
constexpr static Color from_rgba(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t a)
{
return Color{Vector4(r, g, b, a) / 255.f};
}
[[nodiscard]]
constexpr static Color FromHSV(float hue, const float saturation, const float value)
constexpr static Color from_hsv(float hue, const float saturation, const float value)
{
float r{}, g{}, b{};
hue = std::clamp(hue, 0.f, 1.f);
const int i = static_cast<int>(hue * 6.f);
const float f = hue * 6 - i;
const float f = hue * 6.f - static_cast<float>(i);
const float p = value * (1 - saturation);
const float q = value * (1 - f * saturation);
const float t = value * (1 - (1 - f) * saturation);
switch (i % 6)
{
case 0:
r = value, g = t, b = p;
break;
case 1:
r = q, g = value, b = p;
break;
case 2:
r = p, g = value, b = t;
break;
case 3:
r = p, g = q, b = value;
break;
case 4:
r = t, g = p, b = value;
break;
case 5:
r = value, g = p, b = q;
break;
case 0:
r = value, g = t, b = p;
break;
case 1:
r = q, g = value, b = p;
break;
case 2:
r = p, g = value, b = t;
break;
case 3:
r = p, g = q, b = value;
break;
case 4:
r = t, g = p, b = value;
break;
case 5:
r = value, g = p, b = q;
break;
default:
return {0.f, 0.f, 0.f, 0.f};
default:
return {0.f, 0.f, 0.f, 0.f};
}
return {r, g, b, 1.f};
}
[[nodiscard]]
constexpr static Color FromHSV(const HSV& hsv)
constexpr static Color from_hsv(const Hsv& hsv)
{
return FromHSV(hsv.hue, hsv.saturation, hsv.value);
return from_hsv(hsv.hue, hsv.saturation, hsv.value);
}
[[nodiscard]]
constexpr HSV ToHSV() const
constexpr Hsv to_hsv() const
{
HSV hsvData;
Hsv hsv_data;
const float& red = x;
const float& green = y;
@@ -102,70 +100,69 @@ namespace omath
const float min = std::min({red, green, blue});
const float delta = max - min;
if (delta == 0.f)
hsvData.hue = 0.f;
hsv_data.hue = 0.f;
else if (max == red)
hsvData.hue = 60.f * (std::fmodf(((green - blue) / delta), 6.f));
hsv_data.hue = 60.f * (std::fmodf(((green - blue) / delta), 6.f));
else if (max == green)
hsvData.hue = 60.f * (((blue - red) / delta) + 2.f);
hsv_data.hue = 60.f * (((blue - red) / delta) + 2.f);
else if (max == blue)
hsvData.hue = 60.f * (((red - green) / delta) + 4.f);
hsv_data.hue = 60.f * (((red - green) / delta) + 4.f);
if (hsvData.hue < 0.f)
hsvData.hue += 360.f;
if (hsv_data.hue < 0.f)
hsv_data.hue += 360.f;
hsvData.hue /= 360.f;
hsvData.saturation = max == 0.f ? 0.f : delta / max;
hsvData.value = max;
hsv_data.hue /= 360.f;
hsv_data.saturation = max == 0.f ? 0.f : delta / max;
hsv_data.value = max;
return hsvData;
return hsv_data;
}
constexpr explicit Color(const Vector4& vec) : Vector4(vec)
constexpr explicit Color(const Vector4& vec): Vector4(vec)
{
Clamp(0.f, 1.f);
clamp(0.f, 1.f);
}
constexpr void SetHue(const float hue)
constexpr void set_hue(const float hue)
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.hue = hue;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
constexpr void SetSaturation(const float saturation)
constexpr void set_saturation(const float saturation)
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.saturation = saturation;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
constexpr void SetValue(const float value)
constexpr void set_value(const float value)
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.value = value;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
[[nodiscard]]
constexpr Color Blend(const Color& other, float ratio) const
constexpr Color blend(const Color& other, float ratio) const
{
ratio = std::clamp(ratio, 0.f, 1.f);
return Color(*this * (1.f - ratio) + other * ratio);
}
[[nodiscard]] static constexpr Color Red()
[[nodiscard]] static constexpr Color red()
{
return {1.f, 0.f, 0.f, 1.f};
}
[[nodiscard]] static constexpr Color Green()
[[nodiscard]] static constexpr Color green()
{
return {0.f, 1.f, 0.f, 1.f};
}
[[nodiscard]] static constexpr Color Blue()
[[nodiscard]] static constexpr Color blue()
{
return {0.f, 0.f, 1.f, 1.f};
}

View File

@@ -8,14 +8,15 @@
namespace omath::iw_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const override;
};
}
} // namespace omath::iw_engine

View File

@@ -3,23 +3,23 @@
//
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::iw_engine
{
constexpr Vector3<float> kAbsUp = {0, 0, 1};
constexpr Vector3<float> kAbsRight = {0, -1, 0};
constexpr Vector3<float> kAbsForward = {1, 0, 0};
constexpr Vector3<float> k_abs_up = {0, 0, 1};
constexpr Vector3<float> k_abs_right = {0, -1, 0};
constexpr Vector3<float> k_abs_forward = {1, 0, 0};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -89.f, 89.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
}
} // namespace omath::iw_engine

View File

@@ -8,19 +8,19 @@
namespace omath::iw_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles);
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles);
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
} // namespace omath::iw_engine

View File

@@ -7,13 +7,13 @@
namespace omath::opengl_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
void look_at(const Vector3<float>& target) override;
[[nodiscard]] Mat4X4 calc_view_matrix() const override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const override;
};
}
} // namespace omath::opengl_engine

View File

@@ -10,17 +10,16 @@
namespace omath::opengl_engine
{
constexpr Vector3<float> kAbsUp = {0, 1, 0};
constexpr Vector3<float> kAbsRight = {1, 0, 0};
constexpr Vector3<float> kAbsForward = {0, 0, -1};
constexpr Vector3<float> k_abs_up = {0, 1, 0};
constexpr Vector3<float> k_abs_right = {1, 0, 0};
constexpr Vector3<float> k_abs_forward = {0, 0, -1};
using Mat4x4 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::COLUMN_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::COLUMN_MAJOR>;
using PitchAngle = Angle<float, -90.f, 90.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
}
} // namespace omath::opengl_engine

View File

@@ -8,19 +8,19 @@
namespace omath::opengl_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles);
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles);
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
} // namespace omath::opengl_engine

View File

@@ -7,14 +7,15 @@
namespace omath::source_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const override;
};
}
} // namespace omath::source_engine

View File

@@ -3,23 +3,23 @@
//
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::source_engine
{
constexpr Vector3<float> kAbsUp = {0, 0, 1};
constexpr Vector3<float> kAbsRight = {0, -1, 0};
constexpr Vector3<float> kAbsForward = {1, 0, 0};
constexpr Vector3<float> k_abs_up = {0, 0, 1};
constexpr Vector3<float> k_abs_right = {0, -1, 0};
constexpr Vector3<float> k_abs_forward = {1, 0, 0};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -89.f, 89.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
} // namespace omath::source
} // namespace omath::source_engine

View File

@@ -7,19 +7,19 @@
namespace omath::source_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles);
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles);
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
} // namespace omath::source
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
} // namespace omath::source_engine

View File

@@ -8,14 +8,15 @@
namespace omath::unity_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const override;
};
}
} // namespace omath::unity_engine

View File

@@ -4,23 +4,23 @@
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::unity_engine
{
constexpr Vector3<float> kAbsUp = {0, 1, 0};
constexpr Vector3<float> kAbsRight = {1, 0, 0};
constexpr Vector3<float> kAbsForward = {0, 0, 1};
constexpr Vector3<float> k_abs_up = {0, 1, 0};
constexpr Vector3<float> k_abs_right = {1, 0, 0};
constexpr Vector3<float> k_abs_forward = {0, 0, 1};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -90.f, 90.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
} // namespace omath::source
} // namespace omath::unity_engine

View File

@@ -8,19 +8,19 @@
namespace omath::unity_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles);
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles);
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles);
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
} // namespace omath::source
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
} // namespace omath::unity_engine

View File

@@ -2,21 +2,19 @@
// Created by vlad on 9/29/2024.
//
#pragma once
#include "omath/vector3.hpp"
#include <algorithm>
#include <array>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <utility>
#include "omath/vector3.hpp"
#include <numeric>
#ifdef near
#undef near
#endif
#ifdef far
#undef far
#endif
@@ -34,25 +32,22 @@ namespace omath
COLUMN_MAJOR
};
template<typename M1, typename M2>
concept MatTemplateEqual =
(M1::rows == M2::rows) && (M1::columns == M2::columns) &&
std::is_same_v<typename M1::value_type, typename M2::value_type> &&
(M1::store_type == M2::store_type);
template<typename M1, typename M2> concept MatTemplateEqual
= (M1::rows == M2::rows) && (M1::columns == M2::columns)
&& std::is_same_v<typename M1::value_type, typename M2::value_type> && (M1::store_type == M2::store_type);
template<size_t Rows = 0, size_t Columns = 0, class Type = float, MatStoreType StoreType = MatStoreType::ROW_MAJOR>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Mat final
{
public:
constexpr Mat() noexcept
{
Clear();
clear();
}
[[nodiscard]]
constexpr static MatStoreType GetStoreOrdering() noexcept
constexpr static MatStoreType get_store_ordering() noexcept
{
return StoreType;
}
@@ -61,24 +56,24 @@ namespace omath
if (rows.size() != Rows)
throw std::invalid_argument("Initializer list rows size does not match template parameter Rows");
auto rowIt = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++rowIt)
auto row_it = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++row_it)
{
if (rowIt->size() != Columns)
if (row_it->size() != Columns)
throw std::invalid_argument(
"All rows must have the same number of columns as template parameter Columns");
auto colIt = rowIt->begin();
for (size_t j = 0; j < Columns; ++j, ++colIt)
auto col_it = row_it->begin();
for (size_t j = 0; j < Columns; ++j, ++col_it)
{
At(i, j) = std::move(*colIt);
at(i, j) = std::move(*col_it);
}
}
}
constexpr explicit Mat(const Type* rawData)
constexpr explicit Mat(const Type* raw_data)
{
std::copy_n(rawData, Rows * Columns, m_data.begin());
std::copy_n(raw_data, Rows * Columns, m_data.begin());
}
constexpr Mat(const Mat& other) noexcept
@@ -89,13 +84,13 @@ namespace omath
[[nodiscard]]
constexpr Type& operator[](const size_t row, const size_t col)
{
return At(row, col);
return at(row, col);
}
[[nodiscard]]
constexpr Type& operator[](const size_t row, const size_t col) const
{
return At(row, col);
return at(row, col);
}
constexpr Mat(Mat&& other) noexcept
@@ -104,35 +99,35 @@ namespace omath
}
[[nodiscard]]
static constexpr size_t RowCount() noexcept
static constexpr size_t row_count() noexcept
{
return Rows;
}
[[nodiscard]]
static constexpr size_t ColumnsCount() noexcept
static constexpr size_t columns_count() noexcept
{
return Columns;
}
[[nodiscard]]
static consteval MatSize Size() noexcept
static consteval MatSize size() noexcept
{
return {Rows, Columns};
}
[[nodiscard]]
constexpr const Type& At(const size_t rowIndex, const size_t columnIndex) const
constexpr const Type& at(const size_t row_index, const size_t column_index) const
{
#if !defined(NDEBUG) && defined(OMATH_SUPRESS_SAFETY_CHECKS)
if (rowIndex >= Rows || columnIndex >= Columns)
if (row_index >= Rows || column_index >= Columns)
throw std::out_of_range("Index out of range");
#endif
if constexpr (StoreType == MatStoreType::ROW_MAJOR)
return m_data[rowIndex * Columns + columnIndex];
return m_data[row_index * Columns + column_index];
else if constexpr (StoreType == MatStoreType::COLUMN_MAJOR)
return m_data[rowIndex + columnIndex * Rows];
return m_data[row_index + column_index * Rows];
else
{
@@ -141,30 +136,29 @@ namespace omath
}
}
[[nodiscard]] constexpr Type& At(const size_t rowIndex, const size_t columnIndex)
[[nodiscard]] constexpr Type& at(const size_t row_index, const size_t column_index)
{
return const_cast<Type&>(std::as_const(*this).At(rowIndex, columnIndex));
return const_cast<Type&>(std::as_const(*this).at(row_index, column_index));
}
[[nodiscard]]
constexpr Type Sum() const noexcept
constexpr Type sum() const noexcept
{
return std::accumulate(m_data.begin(), m_data.end(), Type(0));
return std::accumulate(m_data.begin(), m_data.end(), static_cast<Type>(0));
}
constexpr void Clear() noexcept
constexpr void clear() noexcept
{
Set(0);
set(static_cast<Type>(0));
}
constexpr void Set(const Type& value) noexcept
constexpr void set(const Type& value) noexcept
{
std::ranges::fill(m_data, value);
}
// Operator overloading for multiplication with another Mat
template<size_t OtherColumns>
[[nodiscard]]
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*(const Mat<Columns, OtherColumns, Type, StoreType>& other) const
{
@@ -175,20 +169,19 @@ namespace omath
{
Type sum = 0;
for (size_t k = 0; k < Columns; ++k)
sum += At(i, k) * other.At(k, j);
result.At(i, j) = sum;
sum += at(i, k) * other.at(k, j);
result.at(i, j) = sum;
}
return result;
}
constexpr Mat& operator*=(const Type& f) noexcept
{
std::ranges::for_each(m_data, [&f](auto& val) {val *= f;});
std::ranges::for_each(m_data, [&f](auto& val) { val *= f; });
return *this;
}
template<size_t OtherColumns>
constexpr Mat<Rows, OtherColumns, Type, StoreType>
template<size_t OtherColumns> constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*=(const Mat<Columns, OtherColumns, Type, StoreType>& other)
{
return *this = *this * other;
@@ -204,7 +197,7 @@ namespace omath
constexpr Mat& operator/=(const Type& value) noexcept
{
std::ranges::for_each(m_data, [&value](auto& val) {val /= value;});
std::ranges::for_each(m_data, [&value](auto& val) { val /= value; });
return *this;
}
@@ -233,41 +226,44 @@ namespace omath
}
[[nodiscard]]
constexpr Mat<Columns, Rows, Type, StoreType> Transposed() const noexcept
constexpr Mat<Columns, Rows, Type, StoreType> transposed() const noexcept
{
Mat<Columns, Rows, Type, StoreType> transposed;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
transposed.At(j, i) = At(i, j);
transposed.at(j, i) = at(i, j);
return transposed;
}
[[nodiscard]]
constexpr Type Determinant() const
constexpr Type determinant() const
{
static_assert(Rows == Columns, "Determinant is only defined for square matrices.");
if constexpr (Rows == 1)
return At(0, 0);
return at(0, 0);
if constexpr (Rows == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
else
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
if constexpr (Rows > 2)
{
Type det = 0;
for (size_t i = 0; i < Columns; ++i)
for (size_t column = 0; column < Columns; ++column)
{
const Type cofactor = (i % 2 == 0 ? 1 : -1) * At(0, i) * Minor(0, i).Determinant();
const Type cofactor = at(0, column) * alg_complement(0, column);
det += cofactor;
}
return det;
}
std::unreachable();
}
[[nodiscard]]
constexpr Mat<Rows - 1, Columns - 1, Type, StoreType> Minor(const size_t row, const size_t column) const
constexpr Mat<Rows - 1, Columns - 1, Type, StoreType> strip(const size_t row, const size_t column) const
{
static_assert(Rows - 1 > 0 && Columns - 1 > 0);
Mat<Rows - 1, Columns - 1, Type, StoreType> result;
for (size_t i = 0, m = 0; i < Rows; ++i)
{
@@ -277,7 +273,7 @@ namespace omath
{
if (j == column)
continue;
result.At(m, n) = At(i, j);
result.at(m, n) = at(i, j);
++n;
}
++m;
@@ -286,19 +282,32 @@ namespace omath
}
[[nodiscard]]
constexpr const std::array<Type, Rows * Columns>& RawArray() const
constexpr Type minor(const size_t row, const size_t column) const
{
return strip(row, column).determinant();
}
[[nodiscard]]
constexpr Type alg_complement(const size_t row, const size_t column) const
{
const auto minor_value = minor(row, column);
return (row + column + 2) % 2 == 0 ? minor_value : -minor_value;
}
[[nodiscard]]
constexpr const std::array<Type, Rows * Columns>& raw_array() const
{
return m_data;
}
[[nodiscard]]
constexpr std::array<Type, Rows * Columns>& RawArray()
constexpr std::array<Type, Rows * Columns>& raw_array()
{
return const_cast<std::array<Type, Rows * Columns>>(std::as_const(*this).RawArray());
return m_data;
}
[[nodiscard]]
std::string ToString() const noexcept
std::string to_string() const noexcept
{
std::ostringstream oss;
oss << "[[";
@@ -310,7 +319,7 @@ namespace omath
for (size_t j = 0; j < Columns; ++j)
{
oss << std::setw(9) << std::fixed << std::setprecision(3) << At(i, j);
oss << std::setw(9) << std::fixed << std::setprecision(3) << at(i, j);
if (j != Columns - 1)
oss << ", ";
}
@@ -333,37 +342,55 @@ namespace omath
// Static methods that return fixed-size matrices
[[nodiscard]]
constexpr static Mat<4, 4> ToScreenMat(const Type& screenWidth, const Type& screenHeight) noexcept
constexpr static Mat<4, 4> to_screen_mat(const Type& screen_width, const Type& screen_height) noexcept
{
return {
{screenWidth / 2, 0, 0, 0},
{0, -screenHeight / 2, 0, 0},
{screen_width / 2, 0, 0, 0},
{0, -screen_height / 2, 0, 0},
{0, 0, 1, 0},
{screenWidth / 2, screenHeight / 2, 0, 1},
{screen_width / 2, screen_height / 2, 0, 1},
};
}
[[nodiscard]]
constexpr std::optional<Mat> inverted() const
{
const auto det = determinant();
if (det == 0)
return std::nullopt;
const auto transposed_mat = transposed();
Mat result;
for (std::size_t row = 0; row < Rows; row++)
for (std::size_t column = 0; column < Rows; column++)
result.at(row, column) = transposed_mat.alg_complement(row, column);
result /= det;
return {result};
}
private:
std::array<Type, Rows * Columns> m_data;
};
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr static Mat<1, 4, Type, St> MatRowFromVector(const Vector3<Type>& vector) noexcept
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<1, 4, Type, St> mat_row_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x, vector.y, vector.z, 1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr static Mat<4, 1, Type, St> MatColumnFromVector(const Vector3<Type>& vector) noexcept
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<4, 1, Type, St> mat_column_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x}, {vector.y}, {vector.z}, {1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr Mat<4, 4, Type, St> MatTranslation(const Vector3<Type>& diff) noexcept
constexpr Mat<4, 4, Type, St> mat_translation(const Vector3<Type>& diff) noexcept
{
return
{
@@ -376,38 +403,38 @@ namespace omath
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisX(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_x(const Angle& angle) noexcept
{
return
{
{1, 0, 0, 0},
{0, angle.Cos(), -angle.Sin(), 0},
{0, angle.Sin(), angle.Cos(), 0},
{0, angle.cos(), -angle.sin(), 0},
{0, angle.sin(), angle.cos(), 0},
{0, 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisY(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_y(const Angle& angle) noexcept
{
return
{
{angle.Cos(), 0, angle.Sin(), 0},
{angle.cos(), 0, angle.sin(), 0},
{0 , 1, 0, 0},
{-angle.Sin(), 0, angle.Cos(), 0},
{-angle.sin(), 0, angle.cos(), 0},
{0 , 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisZ(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_z(const Angle& angle) noexcept
{
return
{
{angle.Cos(), -angle.Sin(), 0, 0},
{angle.Sin(), angle.Cos(), 0, 0},
{angle.cos(), -angle.sin(), 0, 0},
{angle.sin(), angle.cos(), 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
};
@@ -415,8 +442,8 @@ namespace omath
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
static Mat<4, 4, Type, St> MatCameraView(const Vector3<Type>& forward, const Vector3<Type>& right,
const Vector3<Type>& up, const Vector3<Type>& cameraOrigin) noexcept
static Mat<4, 4, Type, St> mat_camera_view(const Vector3<Type>& forward, const Vector3<Type>& right,
const Vector3<Type>& up, const Vector3<Type>& camera_origin) noexcept
{
return Mat<4, 4, Type, St>
{
@@ -425,31 +452,31 @@ namespace omath
{forward.x, forward.y, forward.z, 0},
{0, 0, 0, 1},
} * MatTranslation<Type, St>(-cameraOrigin);
} * mat_translation<Type, St>(-camera_origin);
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> MatPerspectiveLeftHanded(const float fieldOfView, const float aspectRatio, const float near,
const float far) noexcept
Mat<4, 4, Type, St> mat_perspective_left_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, 1.f, 0.f}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> MatPerspectiveRightHanded(const float fieldOfView, const float aspectRatio, const float near,
const float far) noexcept
Mat<4, 4, Type, St> mat_perspective_right_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, -(far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}

View File

@@ -1,8 +1,8 @@
#pragma once
#include "omath/vector3.hpp"
#include <initializer_list>
#include <memory>
#include <string>
#include "omath/vector3.hpp"
namespace omath
{
@@ -16,51 +16,51 @@ namespace omath
Matrix(const std::initializer_list<std::initializer_list<float>>& rows);
[[nodiscard]]
static Matrix ToScreenMatrix(float screenWidth, float screenHeight);
static Matrix to_screen_matrix(float screen_width, float screen_height);
[[nodiscard]]
static Matrix TranslationMatrix(const Vector3<float>& diff);
static Matrix translation_matrix(const Vector3<float>& diff);
[[nodiscard]]
static Matrix OrientationMatrix(const Vector3<float>& forward, const Vector3<float>& right, const Vector3<float>& up);
static Matrix orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up);
[[nodiscard]]
static Matrix ProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
static Matrix projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
Matrix(const Matrix& other);
Matrix(size_t rows, size_t columns, const float* pRaw);
Matrix(size_t rows, size_t columns, const float* raw_data);
Matrix(Matrix&& other) noexcept;
[[nodiscard]]
size_t RowCount() const noexcept;
size_t row_count() const noexcept;
[[nodiscard]]
float& operator[](size_t row, size_t column);
[[nodiscard]]
size_t ColumnsCount() const noexcept;
size_t columns_count() const noexcept;
[[nodiscard]]
std::pair<size_t, size_t> Size() const noexcept;
std::pair<size_t, size_t> size() const noexcept;
[[nodiscard]]
float& At(size_t iRow, size_t iCol);
float& at(size_t row, size_t col);
[[nodiscard]]
float Sum();
float sum();
void SetDataFromRaw(const float* pRawMatrix);
void set_data_from_raw(const float* raw_matrix);
[[nodiscard]]
Matrix Transpose() const;
Matrix transpose() const;
void Set(float val);
void set(float val);
[[nodiscard]]
const float& At(size_t iRow, size_t iCol) const;
const float& at(size_t row, size_t col) const;
Matrix operator*(const Matrix& other) const;
@@ -72,22 +72,22 @@ namespace omath
Matrix& operator/=(float f);
void Clear();
void clear();
[[nodiscard]]
Matrix Strip(size_t row, size_t column) const;
Matrix strip(size_t row, size_t column) const;
[[nodiscard]]
float Minor(size_t i, size_t j) const;
float minor(size_t i, size_t j) const;
[[nodiscard]]
float AlgComplement(size_t i, size_t j) const;
float alg_complement(size_t i, size_t j) const;
[[nodiscard]]
float Determinant() const;
float determinant() const;
[[nodiscard]]
const float* Raw() const;
const float* raw() const;
Matrix& operator=(const Matrix& other);
@@ -96,7 +96,7 @@ namespace omath
Matrix operator/(float f) const;
[[nodiscard]]
std::string ToString() const;
std::string to_string() const;
~Matrix();

View File

@@ -3,9 +3,9 @@
//
#pragma once
#include <vector>
#include "omath/pathfinding/navigation_mesh.hpp"
#include "omath/vector3.hpp"
#include <vector>
namespace omath::pathfinding
{
@@ -14,17 +14,17 @@ namespace omath::pathfinding
{
public:
[[nodiscard]]
static std::vector<Vector3<float>> FindPath(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& navMesh);
static std::vector<Vector3<float>> find_path(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& nav_mesh);
private:
[[nodiscard]]
static std::vector<Vector3<float>>
ReconstructFinalPath(const std::unordered_map<Vector3<float>, PathNode>& closedList,
const Vector3<float>& current);
reconstruct_final_path(const std::unordered_map<Vector3<float>, PathNode>& closed_list,
const Vector3<float>& current);
[[nodiscard]]
static auto GetPerfectNode(const std::unordered_map<Vector3<float>, PathNode>& openList,
const Vector3<float>& endVertex);
static auto get_perfect_node(const std::unordered_map<Vector3<float>, PathNode>& open_list,
const Vector3<float>& end_vertex);
};
} // namespace omath::pathfinding

View File

@@ -4,10 +4,10 @@
#pragma once
#include "omath/vector3.hpp"
#include <expected>
#include <string>
#include <vector>
#include "omath/vector3.hpp"
namespace omath::pathfinding
{
@@ -21,18 +21,18 @@ namespace omath::pathfinding
{
public:
[[nodiscard]]
std::expected<Vector3<float>, std::string> GetClosestVertex(const Vector3<float>& point) const;
std::expected<Vector3<float>, std::string> get_closest_vertex(const Vector3<float>& point) const;
[[nodiscard]]
const std::vector<Vector3<float>>& GetNeighbors(const Vector3<float>& vertex) const;
const std::vector<Vector3<float>>& get_neighbors(const Vector3<float>& vertex) const;
[[nodiscard]]
bool Empty() const;
bool empty() const;
[[nodiscard]] std::vector<uint8_t> Serialize() const;
[[nodiscard]] std::vector<uint8_t> serialize() const;
void Deserialize(const std::vector<uint8_t>& raw);
void deserialize(const std::vector<uint8_t>& raw);
std::unordered_map<Vector3<float>, std::vector<Vector3<float>>> m_verTextMap;
std::unordered_map<Vector3<float>, std::vector<Vector3<float>>> m_vertex_map;
};
} // namespace omath::pathfinding

View File

@@ -6,15 +6,14 @@
#include "omath/projectile_prediction/target.hpp"
#include "omath/vector3.hpp"
namespace omath::projectile_prediction
{
class ProjPredEngine
{
public:
[[nodiscard]]
virtual std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const = 0;
virtual std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const = 0;
virtual ~ProjPredEngine() = default;
};
} // namespace omath::projectile_prediction

View File

@@ -6,21 +6,23 @@
namespace omath::projectile_prediction
{
class ProjPredEngineAVX2 final : public ProjPredEngine
class ProjPredEngineAvx2 final : public ProjPredEngine
{
public:
[[nodiscard]] std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const override;
[[nodiscard]] std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const override;
ProjPredEngineAVX2(float gravityConstant, float simulationTimeStep, float maximumSimulationTime);
~ProjPredEngineAVX2() override = default;
ProjPredEngineAvx2(float gravity_constant, float simulation_time_step, float maximum_simulation_time);
~ProjPredEngineAvx2() override = default;
private:
[[nodiscard]] static std::optional<float> CalculatePitch(const Vector3<float>& projOrigin, const Vector3<float>& targetPos,
float bulletGravity, float v0, float time);
const float m_gravityConstant;
const float m_simulationTimeStep;
const float m_maximumSimulationTime;
[[nodiscard]] static std::optional<float> calculate_pitch(const Vector3<float>& proj_origin,
const Vector3<float>& target_pos,
float bullet_gravity, float v0, float time);
// We use [[maybe_unused]] here since AVX2 is not available for ARM and ARM64 CPU
[[maybe_unused]] const float m_gravity_constant;
[[maybe_unused]] const float m_simulation_time_step;
[[maybe_unused]] const float m_maximum_simulation_time;
};
} // namespace omath::projectile_prediction

View File

@@ -4,38 +4,36 @@
#pragma once
#include <optional>
#include "omath/projectile_prediction/proj_pred_engine.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include "omath/vector3.hpp"
#include <optional>
namespace omath::projectile_prediction
{
class ProjPredEngineLegacy final : public ProjPredEngine
{
public:
explicit ProjPredEngineLegacy(float gravityConstant, float simulationTimeStep, float maximumSimulationTime,
float distanceTolerance);
explicit ProjPredEngineLegacy(float gravity_constant, float simulation_time_step, float maximum_simulation_time,
float distance_tolerance);
[[nodiscard]]
std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const override;
std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const override;
private:
const float m_gravityConstant;
const float m_simulationTimeStep;
const float m_maximumSimulationTime;
const float m_distanceTolerance;
const float m_gravity_constant;
const float m_simulation_time_step;
const float m_maximum_simulation_time;
const float m_distance_tolerance;
[[nodiscard]]
std::optional<float> MaybeCalculateProjectileLaunchPitchAngle(const Projectile& projectile,
const Vector3<float>& targetPosition) const;
std::optional<float> maybe_calculate_projectile_launch_pitch_angle(const Projectile& projectile,
const Vector3<float>& target_position) const;
[[nodiscard]]
bool IsProjectileReachedTarget(const Vector3<float>& targetPosition, const Projectile& projectile, float pitch,
float time) const;
bool is_projectile_reached_target(const Vector3<float>& target_position, const Projectile& projectile,
float pitch, float time) const;
};
} // namespace omath::projectile_prediction

View File

@@ -10,12 +10,11 @@ namespace omath::projectile_prediction
class Projectile final
{
public:
[[nodiscard]]
Vector3<float> PredictPosition(float pitch, float yaw, float time, float gravity) const;
Vector3<float> predict_position(float pitch, float yaw, float time, float gravity) const;
Vector3<float> m_origin;
float m_launchSpeed{};
float m_gravityScale{};
float m_launch_speed{};
float m_gravity_scale{};
};
}
} // namespace omath::projectile_prediction

View File

@@ -10,13 +10,12 @@ namespace omath::projectile_prediction
class Target final
{
public:
[[nodiscard]]
constexpr Vector3<float> PredictPosition(const float time, const float gravity) const
constexpr Vector3<float> predict_position(const float time, const float gravity) const
{
auto predicted = m_origin + m_velocity * time;
if (m_isAirborne)
if (m_is_airborne)
predicted.z -= gravity * std::pow(time, 2.f) * 0.5f;
return predicted;
@@ -24,6 +23,6 @@ namespace omath::projectile_prediction
Vector3<float> m_origin;
Vector3<float> m_velocity;
bool m_isAirborne{};
bool m_is_airborne{};
};
}
} // namespace omath::projectile_prediction

View File

@@ -4,12 +4,12 @@
#pragma once
#include "omath/projection/error_codes.hpp"
#include <expected>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <type_traits>
#include "omath/projection/error_codes.hpp"
namespace omath::projection
{
@@ -19,157 +19,156 @@ namespace omath::projection
float m_width;
float m_height;
[[nodiscard]] constexpr float AspectRatio() const
[[nodiscard]] constexpr float aspect_ratio() const
{
return m_width / m_height;
}
};
using FieldOfView = Angle<float, 0.f, 180.f, AngleFlags::Clamped>;
template<class Mat4x4Type, class ViewAnglesType>
template<class Mat4X4Type, class ViewAnglesType>
class Camera
{
public:
virtual ~Camera() = default;
Camera(const Vector3<float>& position, const ViewAnglesType& viewAngles, const ViewPort& viewPort,
const FieldOfView& fov, const float near, const float far) :
m_viewPort(viewPort), m_fieldOfView(fov), m_farPlaneDistance(far), m_nearPlaneDistance(near),
m_viewAngles(viewAngles), m_origin(position)
Camera(const Vector3<float>& position, const ViewAnglesType& view_angles, const ViewPort& view_port,
const FieldOfView& fov, const float near, const float far)
: m_view_port(view_port), m_field_of_view(fov), m_far_plane_distance(far), m_near_plane_distance(near),
m_view_angles(view_angles), m_origin(position)
{
}
protected:
virtual void LookAt(const Vector3<float>& target) = 0;
virtual void look_at(const Vector3<float>& target) = 0;
[[nodiscard]] virtual Mat4x4Type CalcViewMatrix() const = 0;
[[nodiscard]] virtual Mat4X4Type calc_view_matrix() const = 0;
[[nodiscard]] virtual Mat4x4Type CalcProjectionMatrix() const = 0;
[[nodiscard]] virtual Mat4X4Type calc_projection_matrix() const = 0;
[[nodiscard]] Mat4x4Type CalcViewProjectionMatrix() const
[[nodiscard]] Mat4X4Type calc_view_projection_matrix() const
{
return CalcProjectionMatrix() * CalcViewMatrix();
return calc_projection_matrix() * calc_view_matrix();
}
public:
[[nodiscard]] const Mat4x4Type& GetViewProjectionMatrix() const
[[nodiscard]] const Mat4X4Type& get_view_projection_matrix() const
{
if (!m_viewProjectionMatrix.has_value())
m_viewProjectionMatrix = CalcViewProjectionMatrix();
if (!m_view_projection_matrix.has_value())
m_view_projection_matrix = calc_view_projection_matrix();
return m_viewProjectionMatrix.value();
return m_view_projection_matrix.value();
}
void SetFieldOfView(const FieldOfView& fov)
void set_field_of_view(const FieldOfView& fov)
{
m_fieldOfView = fov;
m_field_of_view = fov;
m_view_projection_matrix = std::nullopt;
}
void SetNearPlane(const float near)
void set_near_plane(const float near)
{
m_nearPlaneDistance = near;
m_near_plane_distance = near;
m_view_projection_matrix = std::nullopt;
}
void SetFarPlane(const float far)
void set_far_plane(const float far)
{
m_farPlaneDistance = far;
m_far_plane_distance = far;
m_view_projection_matrix = std::nullopt;
}
void SetViewAngles(const ViewAnglesType& viewAngles)
void set_view_angles(const ViewAnglesType& view_angles)
{
m_viewAngles = viewAngles;
m_view_angles = view_angles;
m_view_projection_matrix = std::nullopt;
}
void SetOrigin(const Vector3<float>& origin)
void set_origin(const Vector3<float>& origin)
{
m_origin = origin;
m_view_projection_matrix = std::nullopt;
}
void SetViewPort(const ViewPort& viewPort)
void set_view_port(const ViewPort& view_port)
{
m_viewPort = viewPort;
m_view_port = view_port;
m_view_projection_matrix = std::nullopt;
}
[[nodiscard]] const FieldOfView& GetFieldOfView() const
[[nodiscard]] const FieldOfView& get_field_of_view() const
{
return m_fieldOfView;
return m_field_of_view;
}
[[nodiscard]] const float& GetNearPlane() const
[[nodiscard]] const float& get_near_plane() const
{
return m_nearPlaneDistance;
return m_near_plane_distance;
}
[[nodiscard]] const float& GetFarPlane() const
[[nodiscard]] const float& get_far_plane() const
{
return m_farPlaneDistance;
return m_far_plane_distance;
}
[[nodiscard]] const ViewAnglesType& GetViewAngles() const
[[nodiscard]] const ViewAnglesType& get_view_angles() const
{
return m_viewAngles;
return m_view_angles;
}
[[nodiscard]] const Vector3<float>& GetOrigin() const
[[nodiscard]] const Vector3<float>& get_origin() const
{
return m_origin;
}
[[nodiscard]] std::expected<Vector3<float>, Error> WorldToScreen(const Vector3<float>& worldPosition) const
[[nodiscard]] std::expected<Vector3<float>, Error> world_to_screen(const Vector3<float>& world_position) const
{
auto normalizedCords = WorldToViewPort(worldPosition);
auto normalized_cords = world_to_view_port(world_position);
if (!normalizedCords.has_value())
return std::unexpected{normalizedCords.error()};
if (!normalized_cords.has_value())
return std::unexpected{normalized_cords.error()};
return NdcToScreenPosition(*normalizedCords);
return ndc_to_screen_position(*normalized_cords);
}
[[nodiscard]] std::expected<Vector3<float>, Error> WorldToViewPort(const Vector3<float>& worldPosition) const
[[nodiscard]] std::expected<Vector3<float>, Error>
world_to_view_port(const Vector3<float>& world_position) const
{
auto projected = GetViewProjectionMatrix() *
MatColumnFromVector<float, Mat4x4Type::GetStoreOrdering()>(worldPosition);
auto projected = get_view_projection_matrix()
* mat_column_from_vector<float, Mat4X4Type::get_store_ordering()>(world_position);
if (projected.At(3, 0) == 0.0f)
if (projected.at(3, 0) == 0.0f)
return std::unexpected(Error::WORLD_POSITION_IS_OUT_OF_SCREEN_BOUNDS);
projected /= projected.At(3, 0);
projected /= projected.at(3, 0);
if (IsNdcOutOfBounds(projected))
if (is_ndc_out_of_bounds(projected))
return std::unexpected(Error::WORLD_POSITION_IS_OUT_OF_SCREEN_BOUNDS);
return Vector3<float>{projected.At(0, 0), projected.At(1, 0), projected.At(2, 0)};
return Vector3<float>{projected.at(0, 0), projected.at(1, 0), projected.at(2, 0)};
}
protected:
ViewPort m_viewPort{};
Angle<float, 0.f, 180.f, AngleFlags::Clamped> m_fieldOfView;
ViewPort m_view_port{};
Angle<float, 0.f, 180.f, AngleFlags::Clamped> m_field_of_view;
mutable std::optional<Mat4x4Type> m_viewProjectionMatrix;
mutable std::optional<Mat4X4Type> m_view_projection_matrix;
float m_farPlaneDistance;
float m_nearPlaneDistance;
float m_far_plane_distance;
float m_near_plane_distance;
ViewAnglesType m_viewAngles;
ViewAnglesType m_view_angles;
Vector3<float> m_origin;
private:
template<class Type>
[[nodiscard]]
constexpr static bool IsNdcOutOfBounds(const Type& ndc)
template<class Type> [[nodiscard]]
constexpr static bool is_ndc_out_of_bounds(const Type& ndc)
{
return std::ranges::any_of(ndc.RawArray(), [](const auto& val) { return val < -1 || val > 1; });
return std::ranges::any_of(ndc.raw_array(), [](const auto& val) { return val < -1 || val > 1; });
}
[[nodiscard]] Vector3<float> NdcToScreenPosition(const Vector3<float>& ndc) const
[[nodiscard]] Vector3<float> ndc_to_screen_position(const Vector3<float>& ndc) const
{
return
{
(ndc.x + 1.f) / 2.f * m_viewPort.m_width,
(1.f - ndc.y) / 2.f * m_viewPort.m_height,
ndc.z
};
return {(ndc.x + 1.f) / 2.f * m_view_port.m_width, (1.f - ndc.y) / 2.f * m_view_port.m_height, ndc.z};
}
};
} // namespace omath::projection

View File

@@ -5,7 +5,6 @@
#pragma once
#include <cstdint>
namespace omath::projection
{
enum class Error : uint16_t

View File

@@ -6,15 +6,14 @@
namespace omath
{
/*
|\
| \
a | \ hypot
| \
-----
b
*/
/*
|\
| \
a | \ hypot
| \
-----
b
*/
template<class Vector>
class Triangle final
@@ -31,52 +30,53 @@ namespace omath
Vector3<float> m_vertex3;
[[nodiscard]]
constexpr Vector3<float> CalculateNormal() const
constexpr Vector3<float> calculate_normal() const
{
const auto b = SideBVector();
const auto a = SideAVector();
return b.Cross(a).Normalized();
const auto b = side_b_vector();
const auto a = side_a_vector();
return b.cross(a).normalized();
}
[[nodiscard]]
float SideALength() const
float side_a_length() const
{
return m_vertex1.DistTo(m_vertex2);
return m_vertex1.distance_to(m_vertex2);
}
[[nodiscard]]
float SideBLength() const
float side_b_length() const
{
return m_vertex3.DistTo(m_vertex2);
return m_vertex3.distance_to(m_vertex2);
}
[[nodiscard]]
constexpr Vector3<float> SideAVector() const
constexpr Vector3<float> side_a_vector() const
{
return m_vertex1 - m_vertex2;
}
[[nodiscard]]
constexpr float Hypot() const
constexpr float hypot() const
{
return m_vertex1.DistTo(m_vertex3);
return m_vertex1.distance_to(m_vertex3);
}
[[nodiscard]]
constexpr bool IsRectangular() const
constexpr bool is_rectangular() const
{
const auto sideA = SideALength();
const auto sideB = SideBLength();
const auto hypot = Hypot();
const auto side_a = side_a_length();
const auto side_b = side_b_length();
const auto hypot_value = hypot();
return std::abs(sideA*sideA + sideB*sideB - hypot*hypot) <= 0.0001f;
return std::abs(side_a * side_a + side_b * side_b - hypot_value * hypot_value) <= 0.0001f;
}
[[nodiscard]]
constexpr Vector3<float> SideBVector() const
constexpr Vector3<float> side_b_vector() const
{
return m_vertex3 - m_vertex2;
}
[[nodiscard]]
constexpr Vector3<float> MidPoint() const
constexpr Vector3<float> mid_point() const
{
return (m_vertex1 + m_vertex2 + m_vertex3) / 3;
}

View File

@@ -10,12 +10,11 @@
#include <imgui.h>
#endif
namespace omath
{
template<class Type>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Vector2
{
public:
@@ -25,7 +24,7 @@ namespace omath
// Constructors
constexpr Vector2() = default;
constexpr Vector2(const Type& x, const Type& y) : x(x), y(y)
constexpr Vector2(const Type& x, const Type& y): x(x), y(y)
{
}
@@ -108,50 +107,50 @@ namespace omath
}
// Basic vector operations
[[nodiscard]] Type DistTo(const Vector2& vOther) const
[[nodiscard]] Type distance_to(const Vector2& other) const
{
return std::sqrt(DistToSqr(vOther));
return std::sqrt(distance_to_sqr(other));
}
[[nodiscard]] constexpr Type DistToSqr(const Vector2& vOther) const
[[nodiscard]] constexpr Type distance_to_sqr(const Vector2& other) const
{
return (x - vOther.x) * (x - vOther.x) + (y - vOther.y) * (y - vOther.y);
return (x - other.x) * (x - other.x) + (y - other.y) * (y - other.y);
}
[[nodiscard]] constexpr Type Dot(const Vector2& vOther) const
[[nodiscard]] constexpr Type dot(const Vector2& other) const
{
return x * vOther.x + y * vOther.y;
return x * other.x + y * other.y;
}
#ifndef _MSC_VER
[[nodiscard]] constexpr Type Length() const
[[nodiscard]] constexpr Type length() const
{
return std::hypot(this->x, this->y);
}
[[nodiscard]] constexpr Vector2 Normalized() const
[[nodiscard]] constexpr Vector2 normalized() const
{
const Type len = Length();
const Type len = length();
return len > 0.f ? *this / len : *this;
}
#else
[[nodiscard]] Type Length() const
[[nodiscard]] Type length() const
{
return std::hypot(x, y);
}
[[nodiscard]] Vector2 Normalized() const
[[nodiscard]] Vector2 normalized() const
{
const Type len = Length();
const Type len = length();
return len > 0.f ? *this / len : *this;
}
#endif
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const
{
return x * x + y * y;
}
constexpr Vector2& Abs()
constexpr Vector2& abs()
{
// FIXME: Replace with std::abs, if it will become constexprable
x = x < 0 ? -x : x;
@@ -186,20 +185,20 @@ namespace omath
}
// Sum of elements
[[nodiscard]] constexpr Type Sum() const
[[nodiscard]] constexpr Type sum() const
{
return x + y;
}
[[nodiscard]]
constexpr std::tuple<Type, Type> AsTuple() const
constexpr std::tuple<Type, Type> as_tuple() const
{
return std::make_tuple(x, y);
}
#ifdef OMATH_IMGUI_INTEGRATION
[[nodiscard]]
ImVec2 ToImVec2() const
ImVec2 to_im_vec2() const
{
return {static_cast<float>(this->x), static_cast<float>(this->y)};
}

View File

@@ -4,11 +4,11 @@
#pragma once
#include "omath/angle.hpp"
#include "omath/vector2.hpp"
#include <cstdint>
#include <expected>
#include <functional>
#include "omath/angle.hpp"
#include "omath/vector2.hpp"
namespace omath
{
@@ -18,13 +18,16 @@ namespace omath
IMPOSSIBLE_BETWEEN_ANGLE,
};
template<class Type> requires std::is_arithmetic_v<Type>
template<class Type>
requires std::is_arithmetic_v<Type>
class Vector3 : public Vector2<Type>
{
public:
Type z = static_cast<Type>(0);
constexpr Vector3(const Type& x, const Type& y, const Type& z) : Vector2<Type>(x, y), z(z) { }
constexpr Vector3() : Vector2<Type>() {};
constexpr Vector3(const Type& x, const Type& y, const Type& z): Vector2<Type>(x, y), z(z)
{
}
constexpr Vector3(): Vector2<Type>() {};
[[nodiscard]] constexpr bool operator==(const Vector3& src) const
{
@@ -100,72 +103,71 @@ namespace omath
return *this;
}
constexpr Vector3& Abs()
constexpr Vector3& abs()
{
Vector2<Type>::Abs();
Vector2<Type>::abs();
z = z < 0.f ? -z : z;
return *this;
}
[[nodiscard]] constexpr Type DistToSqr(const Vector3& vOther) const
[[nodiscard]] constexpr Type distance_to_sqr(const Vector3& other) const
{
return (*this - vOther).LengthSqr();
return (*this - other).length_sqr();
}
[[nodiscard]] constexpr Type Dot(const Vector3& vOther) const
[[nodiscard]] constexpr Type dot(const Vector3& other) const
{
return Vector2<Type>::Dot(vOther) + z * vOther.z;
return Vector2<Type>::dot(other) + z * other.z;
}
#ifndef _MSC_VER
[[nodiscard]] constexpr Type Length() const
[[nodiscard]] constexpr Type length() const
{
return std::hypot(this->x, this->y, z);
}
[[nodiscard]] constexpr Type Length2D() const
[[nodiscard]] constexpr Type length_2d() const
{
return Vector2<Type>::Length();
return Vector2<Type>::length();
}
[[nodiscard]] Type DistTo(const Vector3& vOther) const
[[nodiscard]] Type distance_to(const Vector3& other) const
{
return (*this - vOther).Length();
return (*this - other).length();
}
[[nodiscard]] constexpr Vector3 Normalized() const
[[nodiscard]] constexpr Vector3 normalized() const
{
const Type length = this->Length();
const Type length_value = this->length();
return length != 0 ? *this / length : *this;
return length_value != 0 ? *this / length_value : *this;
}
#else
[[nodiscard]] Type Length() const
[[nodiscard]] Type length() const
{
return std::hypot(this->x, this->y, z);
}
[[nodiscard]] Vector3 Normalized() const
[[nodiscard]] Vector3 normalized() const
{
const Type length = this->Length();
const Type len = this->length();
return length != 0 ? *this / length : *this;
return len != 0 ? *this / len : *this;
}
[[nodiscard]] Type Length2D() const
[[nodiscard]] Type length_2d() const
{
return Vector2<Type>::Length();
return Vector2<Type>::length();
}
[[nodiscard]] Type DistTo(const Vector3& vOther) const
[[nodiscard]] Type distance_to(const Vector3& vOther) const
{
return (*this - vOther).Length();
return (*this - vOther).length();
}
#endif
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const
{
return Vector2<Type>::LengthSqr() + z * z;
return Vector2<Type>::length_sqr() + z * z;
}
[[nodiscard]] constexpr Vector3 operator-() const
@@ -203,79 +205,69 @@ namespace omath
return {this->x / v.x, this->y / v.y, z / v.z};
}
[[nodiscard]] constexpr Vector3 Cross(const Vector3 &v) const
[[nodiscard]] constexpr Vector3 cross(const Vector3& v) const
{
return
{
this->y * v.z - z * v.y,
z * v.x - this->x * v.z,
this->x * v.y - this->y * v.x
};
return {this->y * v.z - z * v.y, z * v.x - this->x * v.z, this->x * v.y - this->y * v.x};
}
[[nodiscard]] constexpr Type Sum() const
[[nodiscard]] constexpr Type sum() const
{
return Sum2D() + z;
return sum_2d() + z;
}
[[nodiscard]] std::expected<Angle<float, 0.f, 180.f, AngleFlags::Clamped>, Vector3Error>
AngleBetween(const Vector3& other) const
angle_between(const Vector3& other) const
{
const auto bottom = Length() * other.Length();
const auto bottom = length() * other.length();
if (bottom == 0.f)
return std::unexpected(Vector3Error::IMPOSSIBLE_BETWEEN_ANGLE);
return Angle<float, 0.f, 180.f, AngleFlags::Clamped>::FromRadians(std::acos(Dot(other) / bottom));
return Angle<float, 0.f, 180.f, AngleFlags::Clamped>::from_radians(std::acos(dot(other) / bottom));
}
[[nodiscard]] bool IsPerpendicular(const Vector3& other) const
[[nodiscard]] bool is_perpendicular(const Vector3& other) const
{
if (const auto angle = AngleBetween(other))
return angle->AsDegrees() == 90.f;
if (const auto angle = angle_between(other))
return angle->as_degrees() == 90.f;
return false;
}
[[nodiscard]] constexpr Type Sum2D() const
[[nodiscard]] constexpr Type sum_2d() const
{
return Vector2<Type>::Sum();
return Vector2<Type>::sum();
}
[[nodiscard]] constexpr std::tuple<Type, Type, Type> AsTuple() const
[[nodiscard]] constexpr std::tuple<Type, Type, Type> as_tuple() const
{
return std::make_tuple(this->x, this->y, z);
}
[[nodiscard]] Vector3 ViewAngleTo(const Vector3 &other) const
[[nodiscard]] Vector3 view_angle_to(const Vector3& other) const
{
const float distance = DistTo(other);
const float distance = distance_to(other);
const auto delta = other - *this;
return
{
angles::RadiansToDegrees(std::asin(delta.z / distance)),
angles::RadiansToDegrees(std::atan2(delta.y, delta.x)),
0
};
return {angles::radians_to_degrees(std::asin(delta.z / distance)),
angles::radians_to_degrees(std::atan2(delta.y, delta.x)), 0};
}
};
}
} // namespace omath
// ReSharper disable once CppRedundantNamespaceDefinition
namespace std
{
template<>
struct hash<omath::Vector3<float>>
template<> struct hash<omath::Vector3<float>>
{
std::size_t operator()(const omath::Vector3<float>& vec) const noexcept
{
std::size_t hash = 0;
constexpr std::hash<float> hasher;
hash ^= hasher(vec.x) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.y) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.z) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.x) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
hash ^= hasher(vec.y) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
hash ^= hasher(vec.z) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
return hash;
}
};
}
} // namespace std

View File

@@ -6,17 +6,18 @@
#include <algorithm>
#include <omath/vector3.hpp>
namespace omath
{
template <class Type>
template<class Type>
class Vector4 : public Vector3<Type>
{
public:
Type w;
constexpr Vector4(const Type& x, const Type& y, const Type& z, const Type& w) : Vector3<Type>(x, y, z), w(w) {}
constexpr Vector4() : Vector3<Type>(), w(0) {};
constexpr Vector4(const Type& x, const Type& y, const Type& z, const Type& w): Vector3<Type>(x, y, z), w(w)
{
}
constexpr Vector4(): Vector3<Type>(), w(0) {};
[[nodiscard]]
constexpr bool operator==(const Vector4& src) const
@@ -77,29 +78,29 @@ namespace omath
return *this;
}
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const
{
return Vector3<Type>::LengthSqr() + w * w;
return Vector3<Type>::length_sqr() + w * w;
}
[[nodiscard]] constexpr Type Dot(const Vector4& vOther) const
[[nodiscard]] constexpr Type dot(const Vector4& other) const
{
return Vector3<Type>::Dot(vOther) + w * vOther.w;
return Vector3<Type>::dot(other) + w * other.w;
}
[[nodiscard]] Vector3<Type> Length() const
[[nodiscard]] Vector3<Type> length() const
{
return std::sqrt(LengthSqr());
return std::sqrt(length_sqr());
}
constexpr Vector4& Abs()
constexpr Vector4& abs()
{
Vector3<Type>::Abs();
Vector3<Type>::abs();
w = w < 0.f ? -w : w;
return *this;
}
constexpr Vector4& Clamp(const Type& min, const Type& max)
constexpr Vector4& clamp(const Type& min, const Type& max)
{
this->x = std::clamp(this->x, min, max);
this->y = std::clamp(this->y, min, max);
@@ -151,23 +152,22 @@ namespace omath
}
[[nodiscard]]
constexpr Type Sum() const
constexpr Type sum() const
{
return Vector3<Type>::Sum() + w;
return Vector3<Type>::sum() + w;
}
#ifdef OMATH_IMGUI_INTEGRATION
[[nodiscard]]
ImVec4 ToImVec4() const
ImVec4 to_im_vec4() const
{
return
{
static_cast<float>(this->x),
static_cast<float>(this->y),
static_cast<float>(this->z),
static_cast<float>(w),
return {
static_cast<float>(this->x),
static_cast<float>(this->y),
static_cast<float>(this->z),
static_cast<float>(w),
};
}
#endif
};
}
} // namespace omath

View File

@@ -12,4 +12,4 @@ namespace omath
YawType yaw;
RollType roll;
};
}
} // namespace omath

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE box.cpp)

View File

@@ -3,27 +3,25 @@
//
#include "omath/3d_primitives/box.hpp"
namespace omath::primitives
{
std::array<Triangle<Vector3<float>>, 12> CreateBox(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dirForward,
const Vector3<float>& dirRight,
const float ratio)
std::array<Triangle<Vector3<float>>, 12> create_box(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dir_forward,
const Vector3<float>& dir_right, const float ratio)
{
const auto height = top.DistTo(bottom);
const auto sideSize = height / ratio;
const auto height = top.distance_to(bottom);
const auto side_size = height / ratio;
// corner layout (03 bottom, 47 top)
std::array<Vector3<float>, 8> p;
p[0] = bottom + (dirForward + dirRight) * sideSize; // frontrightbottom
p[1] = bottom + (dirForward - dirRight) * sideSize; // frontleftbottom
p[2] = bottom + (-dirForward + dirRight) * sideSize; // backrightbottom
p[3] = bottom + (-dirForward - dirRight) * sideSize; // backleftbottom
p[4] = top + (dirForward + dirRight) * sideSize; // frontrighttop
p[5] = top + (dirForward - dirRight) * sideSize; // frontlefttop
p[6] = top + (-dirForward + dirRight) * sideSize; // backrighttop
p[7] = top + (-dirForward - dirRight) * sideSize; // backlefttop
p[0] = bottom + (dir_forward + dir_right) * side_size; // frontrightbottom
p[1] = bottom + (dir_forward - dir_right) * side_size; // frontleftbottom
p[2] = bottom + (-dir_forward + dir_right) * side_size; // backrightbottom
p[3] = bottom + (-dir_forward - dir_right) * side_size; // backleftbottom
p[4] = top + (dir_forward + dir_right) * side_size; // frontrighttop
p[5] = top + (dir_forward - dir_right) * side_size; // frontlefttop
p[6] = top + (-dir_forward + dir_right) * side_size; // backrighttop
p[7] = top + (-dir_forward - dir_right) * side_size; // backlefttop
std::array<Triangle<Vector3<float>>, 12> poly;
@@ -53,4 +51,4 @@ namespace omath::primitives
return poly;
}
}
} // namespace omath::primitives

View File

@@ -1,11 +0,0 @@
target_sources(omath PRIVATE
matrix.cpp
color.cpp
)
add_subdirectory(projectile_prediction)
add_subdirectory(pathfinding)
add_subdirectory(projection)
add_subdirectory(collision)
add_subdirectory(engines)
add_subdirectory(3d_primitives)

View File

@@ -1,3 +0,0 @@
target_sources(omath PRIVATE
line_tracer.cpp
)

View File

@@ -5,63 +5,59 @@
namespace omath::collision
{
bool LineTracer::CanTraceLine(const Ray& ray, const Triangle<Vector3<float>>& triangle)
bool LineTracer::can_trace_line(const Ray& ray, const Triangle<Vector3<float>>& triangle)
{
return GetRayHitPoint(ray, triangle) == ray.end;
return get_ray_hit_point(ray, triangle) == ray.end;
}
Vector3<float> Ray::DirectionVector() const
Vector3<float> Ray::direction_vector() const
{
return end - start;
}
Vector3<float> Ray::DirectionVectorNormalized() const
Vector3<float> Ray::direction_vector_normalized() const
{
return DirectionVector().Normalized();
return direction_vector().normalized();
}
Vector3<float> LineTracer::GetRayHitPoint(const Ray& ray, const Triangle<Vector3<float>>& triangle)
Vector3<float> LineTracer::get_ray_hit_point(const Ray& ray, const Triangle<Vector3<float>>& triangle)
{
constexpr float kEpsilon = std::numeric_limits<float>::epsilon();
constexpr float k_epsilon = std::numeric_limits<float>::epsilon();
const auto sideA = triangle.SideAVector();
const auto sideB = triangle.SideBVector();
const auto side_a = triangle.side_a_vector();
const auto side_b = triangle.side_b_vector();
const auto ray_dir = ray.direction_vector();
const auto rayDir = ray.DirectionVector();
const auto p = ray_dir.cross(side_b);
const auto det = side_a.dot(p);
const auto p = rayDir.Cross(sideB);
const auto det = sideA.Dot(p);
if (std::abs(det) < kEpsilon)
if (std::abs(det) < k_epsilon)
return ray.end;
const auto invDet = 1.0f / det;
const auto inv_det = 1.0f / det;
const auto t = ray.start - triangle.m_vertex2;
const auto u = t.Dot(p) * invDet;
const auto u = t.dot(p) * inv_det;
if ((u < 0 && std::abs(u) > kEpsilon) || (u > 1 && std::abs(u - 1) > kEpsilon))
if ((u < 0 && std::abs(u) > k_epsilon) || (u > 1 && std::abs(u - 1) > k_epsilon))
return ray.end;
const auto q = t.Cross(sideA);
const auto v = rayDir.Dot(q) * invDet;
const auto q = t.cross(side_a);
// ReSharper disable once CppTooWideScopeInitStatement
const auto v = ray_dir.dot(q) * inv_det;
if ((v < 0 && std::abs(v) > kEpsilon) || (u + v > 1 && std::abs(u + v - 1) > kEpsilon))
if ((v < 0 && std::abs(v) > k_epsilon) || (u + v > 1 && std::abs(u + v - 1) > k_epsilon))
return ray.end;
const auto tHit = sideB.Dot(q) * invDet;
const auto t_hit = side_b.dot(q) * inv_det;
if (ray.infinite_length)
{
if (tHit <= kEpsilon)
if (t_hit <= k_epsilon)
return ray.end;
}
else if (tHit <= kEpsilon || tHit > 1.0f - kEpsilon)
else if (t_hit <= k_epsilon || t_hit > 1.0f - k_epsilon)
return ray.end;
return ray.start + rayDir * tHit;
return ray.start + ray_dir * t_hit;
}
} // namespace omath::collision

View File

@@ -6,7 +6,6 @@
#include <algorithm>
#include <cmath>
namespace omath
{

View File

@@ -1,4 +0,0 @@
add_subdirectory(source_engine)
add_subdirectory(opengl_engine)
add_subdirectory(iw_engine)
add_subdirectory(unity_engine)

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -7,28 +7,27 @@
namespace omath::iw_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const
{
return iw_engine::CalcViewMatrix(m_viewAngles, m_origin);
return iw_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::openg
} // namespace omath::iw_engine

View File

@@ -3,50 +3,49 @@
//
#include "omath/engines/iw_engine/formulas.hpp"
namespace omath::iw_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles)
{
return MatRotationAxisZ(angles.yaw) * MatRotationAxisY(angles.pitch) * MatRotationAxisX(angles.roll);
return mat_rotation_axis_z(angles.yaw) * mat_rotation_axis_y(angles.pitch) * mat_rotation_axis_x(angles.roll);
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
{
return MatCameraView(ForwardVector(angles), RightVector(angles), UpVector(angles), cam_origin);
return mat_camera_view(forward_vector(angles), right_vector(angles), up_vector(angles), cam_origin);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
// NOTE: Need magic number to fix fov calculation, since IW engine inherit Quake proj matrix calculation
constexpr auto kMultiplyFactor = 0.75f;
constexpr auto k_multiply_factor = 0.75f;
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f) * kMultiplyFactor;
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f) * k_multiply_factor;
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, 1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -4,32 +4,30 @@
#include "omath/engines/opengl_engine/camera.hpp"
#include "omath/engines/opengl_engine/formulas.hpp"
namespace omath::opengl_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const
{
return opengl_engine::CalcViewMatrix(m_viewAngles, m_origin);
return opengl_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::opengl
} // namespace omath::opengl_engine

View File

@@ -3,47 +3,48 @@
//
#include "omath/engines/opengl_engine/formulas.hpp"
namespace omath::opengl_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsForward);
const auto vec
= rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsRight);
const auto vec
= rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
{
return MatCameraView<float, MatStoreType::COLUMN_MAJOR>(-ForwardVector(angles), RightVector(angles),
UpVector(angles), cam_origin);
return mat_camera_view<float, MatStoreType::COLUMN_MAJOR>(-forward_vector(angles), right_vector(angles),
up_vector(angles), cam_origin);
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles)
{
return MatRotationAxisZ<float, MatStoreType::COLUMN_MAJOR>(angles.roll) *
MatRotationAxisY<float, MatStoreType::COLUMN_MAJOR>(-angles.yaw) *
MatRotationAxisX<float, MatStoreType::COLUMN_MAJOR>(-angles.pitch);
return mat_rotation_axis_x<float, MatStoreType::COLUMN_MAJOR>(-angles.pitch)
* mat_rotation_axis_y<float, MatStoreType::COLUMN_MAJOR>(-angles.yaw)
* mat_rotation_axis_z<float, MatStoreType::COLUMN_MAJOR>(angles.roll);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, -(far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, -1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -4,34 +4,32 @@
#include "omath/engines/source_engine/camera.hpp"
#include "omath/engines/source_engine/formulas.hpp"
namespace omath::source_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const projection::FieldOfView& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const projection::FieldOfView& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt(const Vector3<float>& target)
void Camera::look_at(const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const
{
return source_engine::CalcViewMatrix(m_viewAngles, m_origin);
return source_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::source
} // namespace omath::source_engine

View File

@@ -3,50 +3,49 @@
//
#include <omath/engines/source_engine/formulas.hpp>
namespace omath::source_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles)
{
return MatRotationAxisZ(angles.yaw) * MatRotationAxisY(angles.pitch) * MatRotationAxisX(angles.roll);
return mat_rotation_axis_z(angles.yaw) * mat_rotation_axis_y(angles.pitch) * mat_rotation_axis_x(angles.roll);
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
{
return MatCameraView(ForwardVector(angles), RightVector(angles), UpVector(angles), cam_origin);
return mat_camera_view(forward_vector(angles), right_vector(angles), up_vector(angles), cam_origin);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
// NOTE: Need magic number to fix fov calculation, since source inherit Quake proj matrix calculation
constexpr auto kMultiplyFactor = 0.75f;
constexpr auto k_multiply_factor = 0.75f;
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f) * kMultiplyFactor;
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f) * k_multiply_factor;
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, 1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE formulas.cpp camera.cpp)

View File

@@ -4,25 +4,24 @@
#include <omath/engines/unity_engine/camera.hpp>
#include <omath/engines/unity_engine/formulas.hpp>
namespace omath::unity_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const projection::FieldOfView& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const projection::FieldOfView& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
throw std::runtime_error("Not implemented");
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const
{
return unity_engine::CalcViewMatrix(m_viewAngles, m_origin);
return unity_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::unity_engine

View File

@@ -3,47 +3,45 @@
//
#include "omath/engines/unity_engine/formulas.hpp"
namespace omath::unity_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles)
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
{
return MatCameraView<float, MatStoreType::ROW_MAJOR>(ForwardVector(angles), -RightVector(angles),
UpVector(angles), cam_origin);
return mat_camera_view<float, MatStoreType::ROW_MAJOR>(forward_vector(angles), -right_vector(angles),
up_vector(angles), cam_origin);
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles)
{
return MatRotationAxisZ(angles.roll) *
MatRotationAxisY(angles.yaw) *
MatRotationAxisX(angles.pitch);
return mat_rotation_axis_x<float, MatStoreType::ROW_MAJOR>(angles.pitch)
* mat_rotation_axis_y<float, MatStoreType::ROW_MAJOR>(angles.yaw)
* mat_rotation_axis_z<float, MatStoreType::ROW_MAJOR>(angles.roll);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, -1.f, 0},
};

View File

@@ -1,14 +1,11 @@
#include "omath/matrix.hpp"
#include "omath/angles.hpp"
#include "omath/vector3.hpp"
#include <complex>
#include <format>
#include <stdexcept>
#include <utility>
namespace omath
{
Matrix::Matrix(const size_t rows, const size_t columns)
@@ -21,7 +18,7 @@ namespace omath
m_data = std::make_unique<float[]>(m_rows * m_columns);
Set(0.f);
set(0.f);
}
Matrix::Matrix(const std::initializer_list<std::initializer_list<float>>& rows)
@@ -29,7 +26,6 @@ namespace omath
m_rows = rows.size();
m_columns = rows.begin()->size();
for (const auto& row: rows)
if (row.size() != m_columns)
throw std::invalid_argument("All rows must have the same number of columns.");
@@ -41,7 +37,7 @@ namespace omath
{
size_t j = 0;
for (const auto& value: row)
At(i, j++) = value;
at(i, j++) = value;
++i;
}
}
@@ -55,29 +51,28 @@ namespace omath
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
at(i, j) = other.at(i, j);
}
Matrix::Matrix(const size_t rows, const size_t columns, const float* pRaw)
Matrix::Matrix(const size_t rows, const size_t columns, const float* raw_data)
{
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < rows * columns; ++i)
At(i / rows, i % columns) = pRaw[i];
at(i / rows, i % columns) = raw_data[i];
}
size_t Matrix::RowCount() const noexcept
size_t Matrix::row_count() const noexcept
{
return m_rows;
}
float& Matrix::operator[](const size_t row, const size_t column)
{
return At(row, column);
return at(row, column);
}
Matrix::Matrix(Matrix&& other) noexcept
@@ -92,35 +87,35 @@ namespace omath
other.m_data = nullptr;
}
size_t Matrix::ColumnsCount() const noexcept
size_t Matrix::columns_count() const noexcept
{
return m_columns;
}
std::pair<size_t, size_t> Matrix::Size() const noexcept
std::pair<size_t, size_t> Matrix::size() const noexcept
{
return {RowCount(), ColumnsCount()};
return {row_count(), columns_count()};
}
float& Matrix::At(const size_t iRow, const size_t iCol)
float& Matrix::at(const size_t row, const size_t col)
{
return const_cast<float&>(std::as_const(*this).At(iRow, iCol));
return const_cast<float&>(std::as_const(*this).at(row, col));
}
float Matrix::Sum()
float Matrix::sum()
{
float sum = 0;
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
sum += At(i, j);
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
sum += at(i, j);
return sum;
}
const float& Matrix::At(const size_t iRow, const size_t iCol) const
const float& Matrix::at(const size_t row, const size_t col) const
{
return m_data[iRow * m_columns + iCol];
return m_data[row * m_columns + col];
}
Matrix Matrix::operator*(const Matrix& other) const
@@ -128,15 +123,14 @@ namespace omath
if (m_columns != other.m_rows)
throw std::runtime_error("n != m");
auto outMat = Matrix(m_rows, other.m_columns);
auto out_mat = Matrix(m_rows, other.m_columns);
for (size_t d = 0; d < m_rows; ++d)
for (size_t i = 0; i < other.m_columns; ++i)
for (size_t j = 0; j < other.m_rows; ++j)
outMat.At(d, i) += At(d, j) * other.At(j, i);
out_mat.at(d, i) += at(d, j) * other.at(j, i);
return outMat;
return out_mat;
}
Matrix& Matrix::operator*=(const Matrix& other)
@@ -150,22 +144,22 @@ namespace omath
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) *= f;
out.at(i, j) *= f;
return out;
}
Matrix& Matrix::operator*=(const float f)
{
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
At(i, j) *= f;
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
at(i, j) *= f;
return *this;
}
void Matrix::Clear()
void Matrix::clear()
{
Set(0.f);
set(0.f);
}
Matrix& Matrix::operator=(const Matrix& other)
@@ -175,7 +169,7 @@ namespace omath
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
at(i, j) = other.at(i, j);
return *this;
}
@@ -199,7 +193,7 @@ namespace omath
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) /= f;
at(i, j) /= f;
return *this;
}
@@ -209,12 +203,12 @@ namespace omath
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) /= f;
out.at(i, j) /= f;
return out;
}
std::string Matrix::ToString() const
std::string Matrix::to_string() const
{
std::string str;
@@ -222,7 +216,7 @@ namespace omath
{
for (size_t j = 0; j < m_columns; ++j)
{
str += std::format("{:.1f}", At(i, j));
str += std::format("{:.1f}", at(i, j));
if (j == m_columns - 1)
str += '\n';
@@ -233,89 +227,89 @@ namespace omath
return str;
}
float Matrix::Determinant() const
float Matrix::determinant() const // NOLINT(*-no-recursion)
{
if (m_rows + m_columns == 2)
return At(0, 0);
return at(0, 0);
if (m_rows == 2 and m_columns == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
float fDet = 0;
float det = 0;
for (size_t i = 0; i < m_columns; i++)
fDet += AlgComplement(0, i) * At(0, i);
det += alg_complement(0, i) * at(0, i);
return fDet;
return det;
}
float Matrix::AlgComplement(const size_t i, const size_t j) const
float Matrix::alg_complement(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
const auto tmp = Minor(i, j);
const auto tmp = minor(i, j);
return ((i + j + 2) % 2 == 0) ? tmp : -tmp;
}
Matrix Matrix::Transpose() const
Matrix Matrix::transpose() const
{
Matrix transposed = {m_columns, m_rows};
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
transposed.At(j, i) = At(i, j);
transposed.at(j, i) = at(i, j);
return transposed;
}
Matrix::~Matrix() = default;
void Matrix::Set(const float val)
void Matrix::set(const float val)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = val;
at(i, j) = val;
}
Matrix Matrix::Strip(const size_t row, const size_t column) const
Matrix Matrix::strip(const size_t row, const size_t column) const
{
Matrix stripped = {m_rows - 1, m_columns - 1};
size_t iStripRowIndex = 0;
size_t strip_row_index = 0;
for (size_t i = 0; i < m_rows; i++)
{
if (i == row)
continue;
size_t iStripColumnIndex = 0;
size_t strip_column_index = 0;
for (size_t j = 0; j < m_columns; ++j)
{
if (j == column)
continue;
stripped.At(iStripRowIndex, iStripColumnIndex) = At(i, j);
iStripColumnIndex++;
stripped.at(strip_row_index, strip_column_index) = at(i, j);
strip_column_index++;
}
iStripRowIndex++;
strip_row_index++;
}
return stripped;
}
float Matrix::Minor(const size_t i, const size_t j) const
float Matrix::minor(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
return Strip(i, j).Determinant();
return strip(i, j).determinant();
}
Matrix Matrix::ToScreenMatrix(const float screenWidth, const float screenHeight)
Matrix Matrix::to_screen_matrix(const float screen_width, const float screen_height)
{
return {
{screenWidth / 2.f, 0.f, 0.f, 0.f},
{0.f, -screenHeight / 2.f, 0.f, 0.f},
{screen_width / 2.f, 0.f, 0.f, 0.f},
{0.f, -screen_height / 2.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{screenWidth / 2.f, screenHeight / 2.f, 0.f, 1.f},
{screen_width / 2.f, screen_height / 2.f, 0.f, 1.f},
};
}
Matrix Matrix::TranslationMatrix(const Vector3<float>& diff)
Matrix Matrix::translation_matrix(const Vector3<float>& diff)
{
return {
{1.f, 0.f, 0.f, 0.f},
@@ -325,7 +319,8 @@ namespace omath
};
}
Matrix Matrix::OrientationMatrix(const Vector3<float>& forward, const Vector3<float>& right, const Vector3<float>& up)
Matrix Matrix::orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up)
{
return {
{right.x, up.x, forward.x, 0.f},
@@ -335,25 +330,26 @@ namespace omath
};
}
Matrix Matrix::ProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near, const float far)
Matrix Matrix::projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), 2.f * near * far / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}
const float* Matrix::Raw() const
const float* Matrix::raw() const
{
return m_data.get();
}
void Matrix::SetDataFromRaw(const float* pRawMatrix)
void Matrix::set_data_from_raw(const float* raw_matrix)
{
for (size_t i = 0; i < m_columns * m_rows; ++i)
At(i / m_rows, i % m_columns) = pRawMatrix[i];
at(i / m_rows, i % m_columns) = raw_matrix[i];
}
Matrix::Matrix()

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE navigation_mesh.cpp a_star.cpp)

View File

@@ -2,96 +2,95 @@
// Created by Vlad on 28.07.2024.
//
#include "omath/pathfinding/a_star.hpp"
#include <algorithm>
#include <optional>
#include <unordered_map>
#include <unordered_set>
namespace omath::pathfinding
{
struct PathNode final
{
std::optional<Vector3<float>> cameFrom;
float gCost = 0.f;
std::optional<Vector3<float>> came_from;
float g_cost = 0.f;
};
std::vector<Vector3<float>> Astar::ReconstructFinalPath(const std::unordered_map<Vector3<float>, PathNode>& closedList,
const Vector3<float>& current)
std::vector<Vector3<float>>
Astar::reconstruct_final_path(const std::unordered_map<Vector3<float>, PathNode>& closed_list,
const Vector3<float>& current)
{
std::vector<Vector3<float>> path;
std::optional currentOpt = current;
std::optional current_opt = current;
while (currentOpt)
while (current_opt)
{
path.push_back(*currentOpt);
path.push_back(*current_opt);
auto it = closedList.find(*currentOpt);
auto it = closed_list.find(*current_opt);
if (it == closedList.end())
if (it == closed_list.end())
break;
currentOpt = it->second.cameFrom;
current_opt = it->second.came_from;
}
std::ranges::reverse(path);
return path;
}
auto Astar::GetPerfectNode(const std::unordered_map<Vector3<float>, PathNode>& openList, const Vector3<float>& endVertex)
auto Astar::get_perfect_node(const std::unordered_map<Vector3<float>, PathNode>& open_list,
const Vector3<float>& end_vertex)
{
return std::ranges::min_element(openList,
[&endVertex](const auto& a, const auto& b)
return std::ranges::min_element(open_list,
[&end_vertex](const auto& a, const auto& b)
{
const float fA = a.second.gCost + a.first.DistTo(endVertex);
const float fB = b.second.gCost + b.first.DistTo(endVertex);
return fA < fB;
const float fa = a.second.g_cost + a.first.distance_to(end_vertex);
const float fb = b.second.g_cost + b.first.distance_to(end_vertex);
return fa < fb;
});
}
std::vector<Vector3<float>> Astar::FindPath(const Vector3<float>& start, const Vector3<float>& end, const NavigationMesh& navMesh)
std::vector<Vector3<float>> Astar::find_path(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& nav_mesh)
{
std::unordered_map<Vector3<float>, PathNode> closedList;
std::unordered_map<Vector3<float>, PathNode> openList;
std::unordered_map<Vector3<float>, PathNode> closed_list;
std::unordered_map<Vector3<float>, PathNode> open_list;
auto maybeStartVertex = navMesh.GetClosestVertex(start);
auto maybeEndVertex = navMesh.GetClosestVertex(end);
auto maybe_start_vertex = nav_mesh.get_closest_vertex(start);
auto maybe_end_vertex = nav_mesh.get_closest_vertex(end);
if (!maybeStartVertex || !maybeEndVertex)
if (!maybe_start_vertex || !maybe_end_vertex)
return {};
const auto startVertex = maybeStartVertex.value();
const auto endVertex = maybeEndVertex.value();
const auto start_vertex = maybe_start_vertex.value();
const auto end_vertex = maybe_end_vertex.value();
open_list.emplace(start_vertex, PathNode{std::nullopt, 0.f});
openList.emplace(startVertex, PathNode{std::nullopt, 0.f});
while (!openList.empty())
while (!open_list.empty())
{
auto currentIt = GetPerfectNode(openList, endVertex);
auto current_it = get_perfect_node(open_list, end_vertex);
const auto current = currentIt->first;
const auto currentNode = currentIt->second;
const auto current = current_it->first;
const auto current_node = current_it->second;
if (current == endVertex)
return ReconstructFinalPath(closedList, current);
if (current == end_vertex)
return reconstruct_final_path(closed_list, current);
closed_list.emplace(current, current_node);
open_list.erase(current_it);
closedList.emplace(current, currentNode);
openList.erase(currentIt);
for (const auto& neighbor: navMesh.GetNeighbors(current))
for (const auto& neighbor: nav_mesh.get_neighbors(current))
{
if (closedList.contains(neighbor))
if (closed_list.contains(neighbor))
continue;
const float tentativeGCost = currentNode.gCost + neighbor.DistTo(current);
const float tentative_g_cost = current_node.g_cost + neighbor.distance_to(current);
const auto openIt = openList.find(neighbor);
// ReSharper disable once CppTooWideScopeInitStatement
const auto open_it = open_list.find(neighbor);
if (openIt == openList.end() || tentativeGCost < openIt->second.gCost)
openList[neighbor] = PathNode{current, tentativeGCost};
if (open_it == open_list.end() || tentative_g_cost < open_it->second.g_cost)
open_list[neighbor] = PathNode{current, tentative_g_cost};
}
}

View File

@@ -2,94 +2,89 @@
// Created by Vlad on 28.07.2024.
//
#include "omath/pathfinding/navigation_mesh.hpp"
#include <algorithm>
#include <stdexcept>
namespace omath::pathfinding
{
std::expected<Vector3<float>, std::string> NavigationMesh::GetClosestVertex(const Vector3<float> &point) const
std::expected<Vector3<float>, std::string> NavigationMesh::get_closest_vertex(const Vector3<float>& point) const
{
const auto res = std::ranges::min_element(m_verTextMap,
[&point](const auto& a, const auto& b)
{
return a.first.DistTo(point) < b.first.DistTo(point);
});
const auto res = std::ranges::min_element(m_vertex_map, [&point](const auto& a, const auto& b)
{ return a.first.distance_to(point) < b.first.distance_to(point); });
if (res == m_verTextMap.cend())
if (res == m_vertex_map.cend())
return std::unexpected("Failed to get clossest point");
return res->first;
}
const std::vector<Vector3<float>>& NavigationMesh::GetNeighbors(const Vector3<float> &vertex) const
const std::vector<Vector3<float>>& NavigationMesh::get_neighbors(const Vector3<float>& vertex) const
{
return m_verTextMap.at(vertex);
return m_vertex_map.at(vertex);
}
bool NavigationMesh::Empty() const
bool NavigationMesh::empty() const
{
return m_verTextMap.empty();
return m_vertex_map.empty();
}
std::vector<uint8_t> NavigationMesh::Serialize() const
std::vector<uint8_t> NavigationMesh::serialize() const
{
auto dumpToVector =[]<typename T>(const T& t, std::vector<uint8_t>& vec){
auto dump_to_vector = []<typename T>(const T& t, std::vector<uint8_t>& vec)
{
for (size_t i = 0; i < sizeof(t); i++)
vec.push_back(*(reinterpret_cast<const uint8_t*>(&t)+i));
vec.push_back(*(reinterpret_cast<const uint8_t*>(&t) + i));
};
std::vector<uint8_t> raw;
for (const auto& [vertex, neighbors] : m_verTextMap)
for (const auto& [vertex, neighbors]: m_vertex_map)
{
const auto neighborsCount = neighbors.size();
const auto neighbors_count = neighbors.size();
dumpToVector(vertex, raw);
dumpToVector(neighborsCount, raw);
dump_to_vector(vertex, raw);
dump_to_vector(neighbors_count, raw);
for (const auto& neighbor : neighbors)
dumpToVector(neighbor, raw);
for (const auto& neighbor: neighbors)
dump_to_vector(neighbor, raw);
}
return raw;
}
void NavigationMesh::Deserialize(const std::vector<uint8_t> &raw)
void NavigationMesh::deserialize(const std::vector<uint8_t>& raw)
{
auto loadFromVector = [](const std::vector<uint8_t>& vec, size_t& offset, auto& value)
auto load_from_vector = [](const std::vector<uint8_t>& vec, size_t& offset, auto& value)
{
if (offset + sizeof(value) > vec.size())
{
throw std::runtime_error("Deserialize: Invalid input data size.");
}
std::copy_n(vec.data() + offset, sizeof(value), (uint8_t*)&value);
std::copy_n(vec.data() + offset, sizeof(value), reinterpret_cast<uint8_t*>(&value));
offset += sizeof(value);
};
m_verTextMap.clear();
m_vertex_map.clear();
size_t offset = 0;
while (offset < raw.size())
{
Vector3<float> vertex;
loadFromVector(raw, offset, vertex);
load_from_vector(raw, offset, vertex);
uint16_t neighborsCount;
loadFromVector(raw, offset, neighborsCount);
uint16_t neighbors_count;
load_from_vector(raw, offset, neighbors_count);
std::vector<Vector3<float>> neighbors;
neighbors.reserve(neighborsCount);
neighbors.reserve(neighbors_count);
for (size_t i = 0; i < neighborsCount; ++i)
for (size_t i = 0; i < neighbors_count; ++i)
{
Vector3<float> neighbor;
loadFromVector(raw, offset, neighbor);
load_from_vector(raw, offset, neighbor);
neighbors.push_back(neighbor);
}
m_verTextMap.emplace(vertex, std::move(neighbors));
m_vertex_map.emplace(vertex, std::move(neighbors));
}
}
}
} // namespace omath::pathfinding

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE proj_pred_engine_legacy.cpp projectile.cpp target.cpp proj_pred_engine_avx2.cpp proj_pred_engine.cpp)

View File

@@ -3,7 +3,6 @@
//
#include "omath/projectile_prediction/proj_pred_engine.hpp"
namespace omath::projectile_prediction
{

View File

@@ -14,8 +14,8 @@
namespace omath::projectile_prediction
{
std::optional<Vector3<float>>
ProjPredEngineAVX2::MaybeCalculateAimPoint([[maybe_unused]] const Projectile& projectile,
[[maybe_unused]] const Target& target) const
ProjPredEngineAvx2::maybe_calculate_aim_point([[maybe_unused]] const Projectile& projectile,
[[maybe_unused]] const Target& target) const
{
#if defined(OMATH_USE_AVX2) && defined(__i386__) && defined(__x86_64__)
const float bulletGravity = m_gravityConstant * projectile.m_gravityScale;
@@ -28,16 +28,16 @@ namespace omath::projectile_prediction
for (; currentTime <= m_maximumSimulationTime; currentTime += m_simulationTimeStep * SIMD_FACTOR)
{
const __m256 times =
_mm256_setr_ps(currentTime, currentTime + m_simulationTimeStep,
currentTime + m_simulationTimeStep * 2, currentTime + m_simulationTimeStep * 3,
currentTime + m_simulationTimeStep * 4, currentTime + m_simulationTimeStep * 5,
currentTime + m_simulationTimeStep * 6, currentTime + m_simulationTimeStep * 7);
const __m256 times
= _mm256_setr_ps(currentTime, currentTime + m_simulationTimeStep,
currentTime + m_simulationTimeStep * 2, currentTime + m_simulationTimeStep * 3,
currentTime + m_simulationTimeStep * 4, currentTime + m_simulationTimeStep * 5,
currentTime + m_simulationTimeStep * 6, currentTime + m_simulationTimeStep * 7);
const __m256 targetX =
_mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.x), times, _mm256_set1_ps(target.m_origin.x));
const __m256 targetY =
_mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.y), times, _mm256_set1_ps(target.m_origin.y));
const __m256 targetX
= _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.x), times, _mm256_set1_ps(target.m_origin.x));
const __m256 targetY
= _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.y), times, _mm256_set1_ps(target.m_origin.y));
const __m256 timesSq = _mm256_mul_ps(times, times);
const __m256 targetZ = _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.z), times,
_mm256_fnmadd_ps(_mm256_set1_ps(0.5f * m_gravityConstant), timesSq,
@@ -112,25 +112,32 @@ namespace omath::projectile_prediction
}
return std::nullopt;
#else
throw std::runtime_error(
std::format("{} AVX2 feature is not enabled!", std::source_location::current().function_name()));
#endif
}
ProjPredEngineAVX2::ProjPredEngineAVX2(const float gravityConstant, const float simulationTimeStep,
const float maximumSimulationTime) :
m_gravityConstant(gravityConstant), m_simulationTimeStep(simulationTimeStep),
m_maximumSimulationTime(maximumSimulationTime)
ProjPredEngineAvx2::ProjPredEngineAvx2(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time)
{
}
std::optional<float> ProjPredEngineAVX2::CalculatePitch(const Vector3<float>& projOrigin,
const Vector3<float>& targetPos, const float bulletGravity,
const float v0, const float time)
std::optional<float> ProjPredEngineAvx2::calculate_pitch([[maybe_unused]] const Vector3<float>& proj_origin,
[[maybe_unused]] const Vector3<float>& target_pos,
[[maybe_unused]] const float bullet_gravity,
[[maybe_unused]] const float v0,
[[maybe_unused]] const float time)
{
#if defined(OMATH_USE_AVX2) && defined(__i386__) && defined(__x86_64__)
if (time <= 0.0f)
return std::nullopt;
const Vector3 delta = targetPos - projOrigin;
const Vector3 delta = target_pos - proj_origin;
const float dSqr = delta.x * delta.x + delta.y * delta.y;
const float h = delta.z;
const float term = h + 0.5f * bulletGravity * time * time;
const float term = h + 0.5f * bullet_gravity * time * time;
const float requiredV0Sqr = (dSqr + term * term) / (time * time);
const float v0Sqr = v0 * v0;
@@ -140,7 +147,6 @@ namespace omath::projectile_prediction
if (dSqr == 0.0f)
return term >= 0.0f ? 90.0f : -90.0f;
const float d = std::sqrt(dSqr);
const float tanTheta = term / d;
return angles::RadiansToDegrees(std::atan(tanTheta));

View File

@@ -4,65 +4,67 @@
namespace omath::projectile_prediction
{
ProjPredEngineLegacy::ProjPredEngineLegacy(const float gravityConstant, const float simulationTimeStep,
const float maximumSimulationTime, const float distanceTolerance) :
m_gravityConstant(gravityConstant), m_simulationTimeStep(simulationTimeStep),
m_maximumSimulationTime(maximumSimulationTime), m_distanceTolerance(distanceTolerance)
ProjPredEngineLegacy::ProjPredEngineLegacy(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time, const float distance_tolerance)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time), m_distance_tolerance(distance_tolerance)
{
}
std::optional<Vector3<float>> ProjPredEngineLegacy::MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const
std::optional<Vector3<float>> ProjPredEngineLegacy::maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const
{
for (float time = 0.f; time < m_maximumSimulationTime; time += m_simulationTimeStep)
for (float time = 0.f; time < m_maximum_simulation_time; time += m_simulation_time_step)
{
const auto predictedTargetPosition = target.PredictPosition(time, m_gravityConstant);
const auto predicted_target_position = target.predict_position(time, m_gravity_constant);
const auto projectilePitch = MaybeCalculateProjectileLaunchPitchAngle(projectile, predictedTargetPosition);
const auto projectile_pitch
= maybe_calculate_projectile_launch_pitch_angle(projectile, predicted_target_position);
if (!projectilePitch.has_value()) [[unlikely]]
if (!projectile_pitch.has_value()) [[unlikely]]
continue;
if (!IsProjectileReachedTarget(predictedTargetPosition, projectile, projectilePitch.value(), time))
if (!is_projectile_reached_target(predicted_target_position, projectile, projectile_pitch.value(), time))
continue;
const auto delta2d = (predictedTargetPosition - projectile.m_origin).Length2D();
const auto height = delta2d * std::tan(angles::DegreesToRadians(projectilePitch.value()));
const auto delta2d = (predicted_target_position - projectile.m_origin).length_2d();
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return Vector3(predictedTargetPosition.x, predictedTargetPosition.y, projectile.m_origin.z + height);
return Vector3(predicted_target_position.x, predicted_target_position.y, projectile.m_origin.z + height);
}
return std::nullopt;
}
std::optional<float>
ProjPredEngineLegacy::MaybeCalculateProjectileLaunchPitchAngle(const Projectile& projectile,
const Vector3<float>& targetPosition) const
ProjPredEngineLegacy::maybe_calculate_projectile_launch_pitch_angle(const Projectile& projectile,
const Vector3<float>& target_position) const
{
const auto bulletGravity = m_gravityConstant * projectile.m_gravityScale;
const auto delta = targetPosition - projectile.m_origin;
const auto bullet_gravity = m_gravity_constant * projectile.m_gravity_scale;
const auto delta = target_position - projectile.m_origin;
const auto distance2d = delta.Length2D();
const auto distance2dSqr = distance2d * distance2d;
const auto launchSpeedSqr = projectile.m_launchSpeed * projectile.m_launchSpeed;
const auto distance2d = delta.length_2d();
const auto distance2d_sqr = distance2d * distance2d;
const auto launch_speed_sqr = projectile.m_launch_speed * projectile.m_launch_speed;
float root = launchSpeedSqr * launchSpeedSqr -
bulletGravity * (bulletGravity * distance2dSqr + 2.0f * delta.z * launchSpeedSqr);
float root = launch_speed_sqr * launch_speed_sqr
- bullet_gravity * (bullet_gravity * distance2d_sqr + 2.0f * delta.z * launch_speed_sqr);
if (root < 0.0f) [[unlikely]]
return std::nullopt;
root = std::sqrt(root);
const float angle = std::atan((launchSpeedSqr - root) / (bulletGravity * distance2d));
const float angle = std::atan((launch_speed_sqr - root) / (bullet_gravity * distance2d));
return angles::RadiansToDegrees(angle);
return angles::radians_to_degrees(angle);
}
bool ProjPredEngineLegacy::IsProjectileReachedTarget(const Vector3<float>& targetPosition, const Projectile& projectile,
const float pitch, const float time) const
bool ProjPredEngineLegacy::is_projectile_reached_target(const Vector3<float>& target_position,
const Projectile& projectile, const float pitch,
const float time) const
{
const auto yaw = projectile.m_origin.ViewAngleTo(targetPosition).y;
const auto projectilePosition = projectile.PredictPosition(pitch, yaw, time, m_gravityConstant);
const auto yaw = projectile.m_origin.view_angle_to(target_position).y;
const auto projectile_position = projectile.predict_position(pitch, yaw, time, m_gravity_constant);
return projectilePosition.DistTo(targetPosition) <= m_distanceTolerance;
return projectile_position.distance_to(target_position) <= m_distance_tolerance;
}
} // namespace omath::projectile_prediction

View File

@@ -3,19 +3,20 @@
//
#include "omath/projectile_prediction/projectile.hpp"
#include <omath/engines/source_engine/formulas.hpp>
namespace omath::projectile_prediction
{
Vector3<float> Projectile::PredictPosition(const float pitch, const float yaw, const float time, const float gravity) const
Vector3<float> Projectile::predict_position(const float pitch, const float yaw, const float time,
const float gravity) const
{
auto currentPos = m_origin + source_engine::ForwardVector({source_engine::PitchAngle::FromDegrees(-pitch),
source_engine::YawAngle::FromDegrees(yaw),
source_engine::RollAngle::FromDegrees(0)}) *
m_launchSpeed * time;
currentPos.z -= (gravity * m_gravityScale) * (time * time) * 0.5f;
auto current_pos = m_origin
+ source_engine::forward_vector({source_engine::PitchAngle::from_degrees(-pitch),
source_engine::YawAngle::from_degrees(yaw),
source_engine::RollAngle::from_degrees(0)})
* m_launch_speed * time;
current_pos.z -= (gravity * m_gravity_scale) * (time * time) * 0.5f;
return currentPos;
return current_pos;
}
} // namespace omath::prediction
} // namespace omath::projectile_prediction

View File

@@ -4,7 +4,6 @@
#include "omath/projectile_prediction/projectile.hpp"
namespace omath::prediction
{

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp)

View File

@@ -3,7 +3,6 @@
//
#include "omath/projection/camera.hpp"
namespace omath::projection
{
}

View File

@@ -1,41 +1,22 @@
enable_testing()
project(unit-tests)
project(unit_tests)
include(GoogleTest)
add_executable(unit-tests
general/unit_test_prediction.cpp
general/unit_test_matrix.cpp
general/unit_test_mat.cpp
general/unit_test_a_star.cpp
general/unit_test_projection.cpp
general/unit_test_vector3.cpp
general/unit_test_vector2.cpp
general/unit_test_color.cpp
general/unit_test_vector4.cpp
general/unit_test_line_trace.cpp
general/unit_test_angles.cpp
general/unit_test_view_angles.cpp
general/unit_test_angle.cpp
general/unit_test_triangle.cpp
general/unit_test_box_primitive.cpp
engines/unit_test_open_gl.cpp
engines/unit_test_unity_engine.cpp
engines/unit_test_source_engine.cpp
engines/unit_test_iw_engine.cpp
file(GLOB_RECURSE UNIT_TESTS_SOURCES CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp")
add_executable(unit_tests ${UNIT_TESTS_SOURCES})
)
set_target_properties(unit-tests PROPERTIES
set_target_properties(unit_tests PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 20
CXX_STANDARD 23
CXX_STANDARD_REQUIRED ON)
target_link_libraries(unit-tests PRIVATE gtest gtest_main omath::omath)
target_link_libraries(unit_tests PRIVATE gtest gtest_main omath::omath)
gtest_discover_tests(unit-tests)
gtest_discover_tests(unit_tests)

View File

@@ -9,69 +9,69 @@
TEST(UnitTestIwEngine, ForwardVector)
{
const auto forward = omath::iw_engine::ForwardVector({});
const auto forward = omath::iw_engine::forward_vector({});
EXPECT_EQ(forward, omath::iw_engine::kAbsForward);
EXPECT_EQ(forward, omath::iw_engine::k_abs_forward);
}
TEST(UnitTestIwEngine, RightVector)
{
const auto right = omath::iw_engine::RightVector({});
const auto right = omath::iw_engine::right_vector({});
EXPECT_EQ(right, omath::iw_engine::kAbsRight);
EXPECT_EQ(right, omath::iw_engine::k_abs_right);
}
TEST(UnitTestIwEngine, UpVector)
{
const auto up = omath::iw_engine::UpVector({});
EXPECT_EQ(up, omath::iw_engine::kAbsUp);
const auto up = omath::iw_engine::up_vector({});
EXPECT_EQ(up, omath::iw_engine::k_abs_up);
}
TEST(UnitTestIwEngine, ForwardVectorRotationYaw)
{
omath::iw_engine::ViewAngles angles;
angles.yaw = omath::iw_engine::YawAngle::FromDegrees(-90.f);
angles.yaw = omath::iw_engine::YawAngle::from_degrees(-90.f);
const auto forward = omath::iw_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::iw_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestIwEngine, ForwardVectorRotationPitch)
{
omath::iw_engine::ViewAngles angles;
angles.pitch = omath::iw_engine::PitchAngle::FromDegrees(-89.f);
angles.pitch = omath::iw_engine::PitchAngle::from_degrees(-89.f);
const auto forward = omath::iw_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsUp.x, 0.02f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsUp.y, 0.01f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsUp.z, 0.01f);
const auto forward = omath::iw_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_up.x, 0.02f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_up.y, 0.01f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_up.z, 0.01f);
}
TEST(UnitTestIwEngine, ForwardVectorRotationRoll)
{
omath::iw_engine::ViewAngles angles;
angles.roll = omath::iw_engine::RollAngle::FromDegrees(90.f);
angles.roll = omath::iw_engine::RollAngle::from_degrees(90.f);
const auto forward = omath::iw_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::iw_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestIwEngine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 1000.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({distance, 0, 0});
const auto projected = cam.world_to_screen({distance, 0, 0});
EXPECT_TRUE(projected.has_value());
@@ -85,21 +85,21 @@ TEST(UnitTestIwEngine, ProjectTargetMovedFromCamera)
TEST(UnitTestIwEngine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestIwEngine, CameraSetAndGetOrigin)
{
auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -9,32 +9,32 @@
TEST(UnitTestOpenGL, ForwardVector)
{
const auto forward = omath::opengl_engine::ForwardVector({});
EXPECT_EQ(forward, omath::opengl_engine::kAbsForward);
const auto forward = omath::opengl_engine::forward_vector({});
EXPECT_EQ(forward, omath::opengl_engine::k_abs_forward);
}
TEST(UnitTestOpenGL, RightVector)
{
const auto right = omath::opengl_engine::RightVector({});
EXPECT_EQ(right, omath::opengl_engine::kAbsRight);
const auto right = omath::opengl_engine::right_vector({});
EXPECT_EQ(right, omath::opengl_engine::k_abs_right);
}
TEST(UnitTestOpenGL, UpVector)
{
const auto up = omath::opengl_engine::UpVector({});
EXPECT_EQ(up, omath::opengl_engine::kAbsUp);
const auto up = omath::opengl_engine::up_vector({});
EXPECT_EQ(up, omath::opengl_engine::k_abs_up);
}
TEST(UnitTestOpenGL, ForwardVectorRotationYaw)
{
omath::opengl_engine::ViewAngles angles;
angles.yaw = omath::opengl_engine::YawAngle::FromDegrees(90.f);
angles.yaw = omath::opengl_engine::YawAngle::from_degrees(90.f);
const auto forward = omath::opengl_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::opengl_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_right.z, 0.00001f);
}
@@ -43,35 +43,35 @@ TEST(UnitTestOpenGL, ForwardVectorRotationPitch)
{
omath::opengl_engine::ViewAngles angles;
angles.pitch = omath::opengl_engine::PitchAngle::FromDegrees(-90.f);
angles.pitch = omath::opengl_engine::PitchAngle::from_degrees(-90.f);
const auto forward = omath::opengl_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsUp.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsUp.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsUp.z, 0.00001f);
const auto forward = omath::opengl_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_up.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_up.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_up.z, 0.00001f);
}
TEST(UnitTestOpenGL, ForwardVectorRotationRoll)
{
omath::opengl_engine::ViewAngles angles;
angles.roll = omath::opengl_engine::RollAngle::FromDegrees(-90.f);
angles.roll = omath::opengl_engine::RollAngle::from_degrees(-90.f);
const auto forward = omath::opengl_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::opengl_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestOpenGL, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = -10.f; distance > -1000.f; distance -= 0.01f)
{
const auto projected = cam.WorldToScreen({0, 0, distance});
const auto projected = cam.world_to_screen({0, 0, distance});
EXPECT_TRUE(projected.has_value());
@@ -85,21 +85,21 @@ TEST(UnitTestOpenGL, ProjectTargetMovedFromCamera)
TEST(UnitTestOpenGL, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestOpenGL, CameraSetAndGetOrigin)
{
auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -9,69 +9,69 @@
TEST(UnitTestSourceEngine, ForwardVector)
{
const auto forward = omath::source_engine::ForwardVector({});
const auto forward = omath::source_engine::forward_vector({});
EXPECT_EQ(forward, omath::source_engine::kAbsForward);
EXPECT_EQ(forward, omath::source_engine::k_abs_forward);
}
TEST(UnitTestSourceEngine, RightVector)
{
const auto right = omath::source_engine::RightVector({});
const auto right = omath::source_engine::right_vector({});
EXPECT_EQ(right, omath::source_engine::kAbsRight);
EXPECT_EQ(right, omath::source_engine::k_abs_right);
}
TEST(UnitTestSourceEngine, UpVector)
{
const auto up = omath::source_engine::UpVector({});
EXPECT_EQ(up, omath::source_engine::kAbsUp);
const auto up = omath::source_engine::up_vector({});
EXPECT_EQ(up, omath::source_engine::k_abs_up);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationYaw)
{
omath::source_engine::ViewAngles angles;
angles.yaw = omath::source_engine::YawAngle::FromDegrees(-90.f);
angles.yaw = omath::source_engine::YawAngle::from_degrees(-90.f);
const auto forward = omath::source_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::source_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationPitch)
{
omath::source_engine::ViewAngles angles;
angles.pitch = omath::source_engine::PitchAngle::FromDegrees(-89.f);
angles.pitch = omath::source_engine::PitchAngle::from_degrees(-89.f);
const auto forward = omath::source_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsUp.x, 0.02f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsUp.y, 0.01f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsUp.z, 0.01f);
const auto forward = omath::source_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_up.x, 0.02f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_up.y, 0.01f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_up.z, 0.01f);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationRoll)
{
omath::source_engine::ViewAngles angles;
angles.roll = omath::source_engine::RollAngle::FromDegrees(90.f);
angles.roll = omath::source_engine::RollAngle::from_degrees(90.f);
const auto forward = omath::source_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::source_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestSourceEngine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 1000.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({distance, 0, 0});
const auto projected = cam.world_to_screen({distance, 0, 0});
EXPECT_TRUE(projected.has_value());
@@ -85,13 +85,13 @@ TEST(UnitTestSourceEngine, ProjectTargetMovedFromCamera)
TEST(UnitTestSourceEngine, ProjectTargetMovedUp)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
auto prev = 1080.f;
for (float distance = 0.0f; distance < 10.f; distance += 1.f)
{
const auto projected = cam.WorldToScreen({100.f, 0, distance});
const auto projected = cam.world_to_screen({100.f, 0, distance});
EXPECT_TRUE(projected.has_value());
if (!projected.has_value())
@@ -105,21 +105,21 @@ TEST(UnitTestSourceEngine, ProjectTargetMovedUp)
TEST(UnitTestSourceEngine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestSourceEngine, CameraSetAndGetOrigin)
{
auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -5,73 +5,73 @@
#include <omath/engines/unity_engine/camera.hpp>
#include <omath/engines/unity_engine/constants.hpp>
#include <omath/engines/unity_engine/formulas.hpp>
#include <print>
TEST(UnitTestUnityEngine, ForwardVector)
{
const auto forward = omath::unity_engine::ForwardVector({});
const auto forward = omath::unity_engine::forward_vector({});
EXPECT_EQ(forward, omath::unity_engine::kAbsForward);
EXPECT_EQ(forward, omath::unity_engine::k_abs_forward);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationYaw)
{
omath::unity_engine::ViewAngles angles;
angles.yaw = omath::unity_engine::YawAngle::FromDegrees(90.f);
angles.yaw = omath::unity_engine::YawAngle::from_degrees(90.f);
const auto forward = omath::unity_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::unity_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationPitch)
{
omath::unity_engine::ViewAngles angles;
angles.pitch = omath::unity_engine::PitchAngle::FromDegrees(-90.f);
angles.pitch = omath::unity_engine::PitchAngle::from_degrees(-90.f);
const auto forward = omath::unity_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsUp.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsUp.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsUp.z, 0.00001f);
const auto forward = omath::unity_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_up.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_up.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_up.z, 0.00001f);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationRoll)
{
omath::unity_engine::ViewAngles angles;
angles.roll = omath::unity_engine::RollAngle::FromDegrees(-90.f);
angles.roll = omath::unity_engine::RollAngle::from_degrees(-90.f);
const auto forward = omath::unity_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::unity_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestUnityEngine, RightVector)
{
const auto right = omath::unity_engine::RightVector({});
const auto right = omath::unity_engine::right_vector({});
EXPECT_EQ(right, omath::unity_engine::kAbsRight);
EXPECT_EQ(right, omath::unity_engine::k_abs_right);
}
TEST(UnitTestUnityEngine, UpVector)
{
const auto up = omath::unity_engine::UpVector({});
EXPECT_EQ(up, omath::unity_engine::kAbsUp);
const auto up = omath::unity_engine::up_vector({});
EXPECT_EQ(up, omath::unity_engine::k_abs_up);
}
TEST(UnitTestUnityEngine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(60.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(60.f);
const auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1280.f, 720.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 100.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({0, 0, distance});
const auto projected = cam.world_to_screen({0, 0, distance});
EXPECT_TRUE(projected.has_value());
@@ -84,30 +84,30 @@ TEST(UnitTestUnityEngine, ProjectTargetMovedFromCamera)
}
TEST(UnitTestUnityEngine, Project)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(60.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(60.f);
const auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1280.f, 720.f}, fov, 0.03f, 1000.f);
const auto proj = cam.WorldToScreen({5.f, 3, 10.f});
const auto proj = cam.world_to_screen({5.f, 3, 10.f});
std::println("{} {}", proj->x, proj->y);
}
TEST(UnitTestUnityEngine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestUnityEngine, CameraSetAndGetOrigin)
{
auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -4,14 +4,13 @@
#include <gtest/gtest.h>
#include <omath/pathfinding/a_star.hpp>
TEST(UnitTestAstar, FindingRightPath)
TEST(unit_test_a_star, finding_right_path)
{
omath::pathfinding::NavigationMesh mesh;
mesh.m_verTextMap[{0.f, 0.f, 0.f}] = {{0.f, 1.f, 0.f}};
mesh.m_verTextMap[{0.f, 1.f, 0.f}] = {{0.f, 2.f, 0.f}};
mesh.m_verTextMap[{0.f, 2.f, 0.f}] = {{0.f, 3.f, 0.f}};
mesh.m_verTextMap[{0.f, 3.f, 0.f}] = {};
std::ignore = omath::pathfinding::Astar::FindPath({}, {0.f, 3.f, 0.f}, mesh);
mesh.m_vertex_map[{0.f, 0.f, 0.f}] = {{0.f, 1.f, 0.f}};
mesh.m_vertex_map[{0.f, 1.f, 0.f}] = {{0.f, 2.f, 0.f}};
mesh.m_vertex_map[{0.f, 2.f, 0.f}] = {{0.f, 3.f, 0.f}};
mesh.m_vertex_map[{0.f, 3.f, 0.f}] = {};
std::ignore = omath::pathfinding::Astar::find_path({}, {0.f, 3.f, 0.f}, mesh);
}

View File

@@ -4,46 +4,46 @@
#include <gtest/gtest.h>
#include <omath/angles.hpp>
TEST(UnitTestAngles, RadiansToDeg)
TEST(unit_test_angles, radians_to_deg)
{
constexpr float rad = 67;
EXPECT_NEAR(omath::angles::RadiansToDegrees(rad), 3838.82f, 0.01f);
EXPECT_NEAR(omath::angles::radians_to_degrees(rad), 3838.82f, 0.01f);
}
TEST(UnitTestAngles, DegreesToRadians)
TEST(unit_test_angles, degrees_to_radians)
{
constexpr float degree = 90;
EXPECT_NEAR(omath::angles::DegreesToRadians(degree), 1.5708f, 0.01f);
EXPECT_NEAR(omath::angles::degrees_to_radians(degree), 1.5708f, 0.01f);
}
TEST(UnitTestAngles, HorizontalFovToVerical)
TEST(unit_test_angles, horizontal_fov_to_verical)
{
constexpr float hFov = 90;
constexpr float aspectRation = 16.0f / 9.0f;
const auto verticalFov = omath::angles::HorizontalFovToVertical(hFov, aspectRation);
const auto verticalFov = omath::angles::horizontal_fov_to_vertical(hFov, aspectRation);
EXPECT_NEAR(verticalFov, 58.71f, 0.01f);
}
TEST(UnitTestAngles, VerticalToHorizontal)
TEST(unit_test_angles, vertical_to_horizontal)
{
constexpr float vFov = 58.71;
constexpr float aspectRation = 16.0f / 9.0f;
const auto horizontalFov = omath::angles::VerticalFovToHorizontal(vFov, aspectRation);
const auto horizontalFov = omath::angles::vertical_fov_to_horizontal(vFov, aspectRation);
EXPECT_NEAR(horizontalFov, 89.99f, 0.01f);
}
TEST(UnitTestAngles, WrapAngle)
TEST(unit_test_angles, wrap_angle)
{
const float wrapped = omath::angles::WrapAngle(361.f, 0.f, 360.f);
const float wrapped = omath::angles::wrap_angle(361.f, 0.f, 360.f);
EXPECT_NEAR(wrapped, 1.f, 0.01f);
}
TEST(UnitTestAngles, WrapAngleNegativeRange)
TEST(unit_test_angles, wrap_angle_negative_range)
{
const float wrapped = omath::angles::WrapAngle(-90.f, 0.f, 360.f);
const float wrapped = omath::angles::wrap_angle(-90.f, 0.f, 360.f);
EXPECT_NEAR(wrapped, 270.f, 0.01f);
}

View File

@@ -15,8 +15,8 @@ protected:
void SetUp() override
{
color1 = Color::Red();
color2 = Color::Green();
color1 = Color::red();
color2 = Color::green();
}
};
@@ -43,7 +43,7 @@ TEST_F(UnitTestColor, Constructor_Vector4)
// Test static methods for color creation
TEST_F(UnitTestColor, FromRGBA)
{
constexpr Color color = Color::FromRGBA(128, 64, 32, 255);
constexpr Color color = Color::from_rgba(128, 64, 32, 255);
EXPECT_FLOAT_EQ(color.x, 128.0f / 255.0f);
EXPECT_FLOAT_EQ(color.y, 64.0f / 255.0f);
EXPECT_FLOAT_EQ(color.z, 32.0f / 255.0f);
@@ -52,7 +52,7 @@ TEST_F(UnitTestColor, FromRGBA)
TEST_F(UnitTestColor, FromHSV)
{
constexpr Color color = Color::FromHSV(0.0f, 1.0f, 1.0f); // Red in HSV
constexpr Color color = Color::from_hsv(0.0f, 1.0f, 1.0f); // Red in HSV
EXPECT_FLOAT_EQ(color.x, 1.0f);
EXPECT_FLOAT_EQ(color.y, 0.0f);
EXPECT_FLOAT_EQ(color.z, 0.0f);
@@ -62,7 +62,7 @@ TEST_F(UnitTestColor, FromHSV)
// Test HSV conversion
TEST_F(UnitTestColor, ToHSV)
{
HSV hsv = color1.ToHSV(); // Red color
Hsv hsv = color1.to_hsv(); // Red color
EXPECT_FLOAT_EQ(hsv.hue, 0.0f);
EXPECT_FLOAT_EQ(hsv.saturation, 1.0f);
EXPECT_FLOAT_EQ(hsv.value, 1.0f);
@@ -71,7 +71,7 @@ TEST_F(UnitTestColor, ToHSV)
// Test color blending
TEST_F(UnitTestColor, Blend)
{
Color blended = color1.Blend(color2, 0.5f);
Color blended = color1.blend(color2, 0.5f);
EXPECT_FLOAT_EQ(blended.x, 0.5f);
EXPECT_FLOAT_EQ(blended.y, 0.5f);
EXPECT_FLOAT_EQ(blended.z, 0.0f);
@@ -81,9 +81,9 @@ TEST_F(UnitTestColor, Blend)
// Test predefined colors
TEST_F(UnitTestColor, PredefinedColors)
{
constexpr Color red = Color::Red();
constexpr Color green = Color::Green();
constexpr Color blue = Color::Blue();
constexpr Color red = Color::red();
constexpr Color green = Color::green();
constexpr Color blue = Color::blue();
EXPECT_FLOAT_EQ(red.x, 1.0f);
EXPECT_FLOAT_EQ(red.y, 0.0f);
@@ -106,7 +106,7 @@ TEST_F(UnitTestColor, BlendVector3)
{
constexpr Color v1(1.0f, 0.0f, 0.0f, 1.f); // Red
constexpr Color v2(0.0f, 1.0f, 0.0f, 1.f); // Green
constexpr Color blended = v1.Blend(v2, 0.5f);
constexpr Color blended = v1.blend(v2, 0.5f);
EXPECT_FLOAT_EQ(blended.x, 0.5f);
EXPECT_FLOAT_EQ(blended.y, 0.5f);
EXPECT_FLOAT_EQ(blended.z, 0.0f);

View File

@@ -59,7 +59,7 @@ namespace
TEST_P(CanTraceLineParam, VariousRays)
{
const auto& p = GetParam();
EXPECT_EQ(LineTracer::CanTraceLine(p.ray, triangle), p.expected_clear);
EXPECT_EQ(LineTracer::can_trace_line(p.ray, triangle), p.expected_clear);
}
INSTANTIATE_TEST_SUITE_P(
@@ -84,7 +84,7 @@ namespace
constexpr Ray ray{{0.3f, 0.3f, -1.f}, {0.3f, 0.3f, 1.f}};
constexpr Vec3 expected{0.3f, 0.3f, 0.f};
const Vec3 hit = LineTracer::GetRayHitPoint(ray, triangle);
const Vec3 hit = LineTracer::get_ray_hit_point(ray, triangle);
ASSERT_FALSE(VecEqual(hit, ray.end));
EXPECT_TRUE(VecEqual(hit, expected));
}
@@ -99,7 +99,7 @@ namespace
{1001.f, 1000.f, 1000.f},
{1000.f, 1001.f, 1000.f}};
EXPECT_TRUE(LineTracer::CanTraceLine(short_ray, distant));
EXPECT_TRUE(LineTracer::can_trace_line(short_ray, distant));
}
TEST(LineTracerTraceRayEdge, CantHit)
@@ -108,14 +108,13 @@ namespace
constexpr Ray ray{{}, {1.0, 0, 0}, false};
EXPECT_TRUE(omath::collision::LineTracer::CanTraceLine(ray, triangle));
EXPECT_TRUE(omath::collision::LineTracer::can_trace_line(ray, triangle));
}
TEST(LineTracerTraceRayEdge, CanHit)
{
constexpr omath::Triangle<Vector3<float>> triangle{{2, 0, 0}, {2, 2, 0}, {2, 2, 2}};
constexpr Ray ray{{}, {2.1, 0, 0}, false};
auto endPoint = omath::collision::LineTracer::GetRayHitPoint(ray, triangle);
EXPECT_FALSE(omath::collision::LineTracer::CanTraceLine(ray, triangle));
EXPECT_FALSE(omath::collision::LineTracer::can_trace_line(ray, triangle));
}
} // namespace

View File

@@ -22,22 +22,22 @@ protected:
TEST_F(UnitTestMat, Constructor_Default)
{
Mat<3, 3> m;
EXPECT_EQ(m.RowCount(), 3);
EXPECT_EQ(m.ColumnsCount(), 3);
EXPECT_EQ(m.row_count(), 3);
EXPECT_EQ(m.columns_count(), 3);
for (size_t i = 0; i < 3; ++i)
for (size_t j = 0; j < 3; ++j)
EXPECT_FLOAT_EQ(m.At(i, j), 0.0f);
EXPECT_FLOAT_EQ(m.at(i, j), 0.0f);
}
TEST_F(UnitTestMat, Constructor_InitializerList)
{
constexpr Mat<2, 2> m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.RowCount(), 2);
EXPECT_EQ(m.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.At(0, 1), 2.0f);
EXPECT_FLOAT_EQ(m.At(1, 0), 3.0f);
EXPECT_FLOAT_EQ(m.At(1, 1), 4.0f);
EXPECT_EQ(m.row_count(), 2);
EXPECT_EQ(m.columns_count(), 2);
EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.at(0, 1), 2.0f);
EXPECT_FLOAT_EQ(m.at(1, 0), 3.0f);
EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f);
}
TEST_F(UnitTestMat, Operator_SquareBrackets)
@@ -51,19 +51,19 @@ TEST_F(UnitTestMat, Operator_SquareBrackets)
TEST_F(UnitTestMat, Constructor_Copy)
{
Mat<2, 2> m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1));
}
TEST_F(UnitTestMat, Constructor_Move)
{
Mat<2, 2> m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
@@ -71,61 +71,61 @@ TEST_F(UnitTestMat, Constructor_Move)
TEST_F(UnitTestMat, Operator_Multiplication_Matrix)
{
Mat<2, 2> m3 = m2 * m2;
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.At(0, 1), 10.0f);
EXPECT_FLOAT_EQ(m3.At(1, 0), 15.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 22.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.at(0, 1), 10.0f);
EXPECT_FLOAT_EQ(m3.at(1, 0), 15.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f);
}
TEST_F(UnitTestMat, Operator_Multiplication_Scalar)
{
Mat<2, 2> m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 8.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f);
}
TEST_F(UnitTestMat, Operator_Division_Scalar)
{
Mat<2, 2> m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 2.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMat, Transpose)
{
Mat<2, 2> m3 = m2.Transposed();
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(0, 1), m2.At(1, 0));
EXPECT_FLOAT_EQ(m3.At(1, 0), m2.At(0, 1));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
Mat<2, 2> m3 = m2.transposed();
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
EXPECT_FLOAT_EQ(m3.at(0, 1), m2.at(1, 0));
EXPECT_FLOAT_EQ(m3.at(1, 0), m2.at(0, 1));
EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1));
}
TEST_F(UnitTestMat, Determinant)
{
const float det = m2.Determinant();
const float det = m2.determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMat, Sum)
{
const float sum = m2.Sum();
const float sum = m2.sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMat, Clear)
{
m2.Clear();
for (size_t i = 0; i < m2.RowCount(); ++i)
for (size_t j = 0; j < m2.ColumnsCount(); ++j)
EXPECT_FLOAT_EQ(m2.At(i, j), 0.0f);
m2.clear();
for (size_t i = 0; i < m2.row_count(); ++i)
for (size_t j = 0; j < m2.columns_count(); ++j)
EXPECT_FLOAT_EQ(m2.at(i, j), 0.0f);
}
TEST_F(UnitTestMat, ToString)
{
const std::string str = m2.ToString();
const std::string str = m2.to_string();
EXPECT_FALSE(str.empty());
EXPECT_EQ(str, "[[ 1.000, 2.000]\n [ 3.000, 4.000]]");
}
@@ -135,31 +135,31 @@ TEST_F(UnitTestMat, AssignmentOperator_Copy)
{
Mat<2, 2> m3;
m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMat, AssignmentOperator_Move)
{
Mat<2, 2> m3;
m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
// Test static methods
TEST_F(UnitTestMat, StaticMethod_ToScreenMat)
{
Mat<4, 4> screenMat = Mat<4, 4>::ToScreenMat(800.0f, 600.0f);
EXPECT_FLOAT_EQ(screenMat.At(0, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(1, 1), -300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 1), 300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 3), 1.0f);
Mat<4, 4> screenMat = Mat<4, 4>::to_screen_mat(800.0f, 600.0f);
EXPECT_FLOAT_EQ(screenMat.at(0, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.at(1, 1), -300.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 1), 300.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 3), 1.0f);
}
@@ -175,34 +175,42 @@ TEST_F(UnitTestMat, Method_At_OutOfRange)
// Test Determinant for 3x3 matrix
TEST(UnitTestMatStandalone, Determinant_3x3)
{
constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.Determinant();
constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.determinant();
EXPECT_FLOAT_EQ(det, -306.0f);
}
// Test Minor for 3x3 matrix
TEST(UnitTestMatStandalone, Minor_3x3)
TEST(UnitTestMatStandalone, Strip_3x3)
{
constexpr Mat<3, 3> m{{3, 0, 2}, {2, 0, -2}, {0, 1, 1}};
auto minor = m.Minor(0, 0);
EXPECT_EQ(minor.RowCount(), 2);
EXPECT_EQ(minor.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(minor.At(0, 0), 0.0f);
EXPECT_FLOAT_EQ(minor.At(0, 1), -2.0f);
EXPECT_FLOAT_EQ(minor.At(1, 0), 1.0f);
EXPECT_FLOAT_EQ(minor.At(1, 1), 1.0f);
auto minor = m.strip(0, 0);
EXPECT_EQ(minor.row_count(), 2);
EXPECT_EQ(minor.columns_count(), 2);
EXPECT_FLOAT_EQ(minor.at(0, 0), 0.0f);
EXPECT_FLOAT_EQ(minor.at(0, 1), -2.0f);
EXPECT_FLOAT_EQ(minor.at(1, 0), 1.0f);
EXPECT_FLOAT_EQ(minor.at(1, 1), 1.0f);
}
// Test Transpose for non-square matrix
TEST(UnitTestMatStandalone, Transpose_NonSquare)
{
constexpr Mat<2, 3> m{{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}};
auto transposed = m.Transposed();
EXPECT_EQ(transposed.RowCount(), 3);
EXPECT_EQ(transposed.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(transposed.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 0), 2.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 0), 3.0f);
EXPECT_FLOAT_EQ(transposed.At(0, 1), 4.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 1), 5.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 1), 6.0f);
auto transposed = m.transposed();
EXPECT_EQ(transposed.row_count(), 3);
EXPECT_EQ(transposed.columns_count(), 2);
EXPECT_FLOAT_EQ(transposed.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transposed.at(1, 0), 2.0f);
EXPECT_FLOAT_EQ(transposed.at(2, 0), 3.0f);
EXPECT_FLOAT_EQ(transposed.at(0, 1), 4.0f);
EXPECT_FLOAT_EQ(transposed.at(1, 1), 5.0f);
EXPECT_FLOAT_EQ(transposed.at(2, 1), 6.0f);
}
TEST(UnitTestMatStandalone, Enverse)
{
constexpr Mat<2, 2> m{{1.0f, 3.0f}, {2.0f, 5.0f}};
constexpr Mat<2,2> mv{{-5.0f, 3.0f}, {2.0f, -1.0f}};
EXPECT_EQ(mv, m.inverted());
}

View File

@@ -25,8 +25,8 @@ protected:
TEST_F(UnitTestMatrix, Constructor_Size)
{
const Matrix m(3, 3);
EXPECT_EQ(m.RowCount(), 3);
EXPECT_EQ(m.ColumnsCount(), 3);
EXPECT_EQ(m.row_count(), 3);
EXPECT_EQ(m.columns_count(), 3);
}
TEST_F(UnitTestMatrix, Operator_SquareBrackets)
@@ -41,120 +41,120 @@ TEST_F(UnitTestMatrix, Operator_SquareBrackets)
TEST_F(UnitTestMatrix, Constructor_InitializerList)
{
Matrix m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.RowCount(), 2);
EXPECT_EQ(m.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.At(1, 1), 4.0f);
EXPECT_EQ(m.row_count(), 2);
EXPECT_EQ(m.columns_count(), 2);
EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f);
}
TEST_F(UnitTestMatrix, Constructor_Copy)
{
Matrix m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, Constructor_Move)
{
Matrix m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_EQ(m2.RowCount(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.ColumnsCount(), 0);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}
// Test matrix operations
TEST_F(UnitTestMatrix, Operator_Multiplication_Matrix)
{
Matrix m3 = m2 * m2;
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 22.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f);
}
TEST_F(UnitTestMatrix, Operator_Multiplication_Scalar)
{
Matrix m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 8.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f);
}
TEST_F(UnitTestMatrix, Operator_Division_Scalar)
{
Matrix m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 2.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMatrix, Transpose)
{
Matrix m3 = m2.Transpose();
EXPECT_FLOAT_EQ(m3.At(0, 1), 3.0f);
EXPECT_FLOAT_EQ(m3.At(1, 0), 2.0f);
Matrix m3 = m2.transpose();
EXPECT_FLOAT_EQ(m3.at(0, 1), 3.0f);
EXPECT_FLOAT_EQ(m3.at(1, 0), 2.0f);
}
TEST_F(UnitTestMatrix, Determinant)
{
const float det = m2.Determinant();
const float det = m2.determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMatrix, Minor)
{
const float minor = m2.Minor(0, 0);
const float minor = m2.minor(0, 0);
EXPECT_FLOAT_EQ(minor, 4.0f);
}
TEST_F(UnitTestMatrix, AlgComplement)
{
const float algComp = m2.AlgComplement(0, 0);
const float algComp = m2.alg_complement(0, 0);
EXPECT_FLOAT_EQ(algComp, 4.0f);
}
TEST_F(UnitTestMatrix, Strip)
{
Matrix m3 = m2.Strip(0, 0);
EXPECT_EQ(m3.RowCount(), 1);
EXPECT_EQ(m3.ColumnsCount(), 1);
EXPECT_FLOAT_EQ(m3.At(0, 0), 4.0f);
Matrix m3 = m2.strip(0, 0);
EXPECT_EQ(m3.row_count(), 1);
EXPECT_EQ(m3.columns_count(), 1);
EXPECT_FLOAT_EQ(m3.at(0, 0), 4.0f);
}
TEST_F(UnitTestMatrix, ProjectionMatrix)
{
const Matrix proj = Matrix::ProjectionMatrix(45.0f, 1.33f, 0.1f, 100.0f);
EXPECT_EQ(proj.RowCount(), 4);
EXPECT_EQ(proj.ColumnsCount(), 4);
const Matrix proj = Matrix::projection_matrix(45.0f, 1.33f, 0.1f, 100.0f);
EXPECT_EQ(proj.row_count(), 4);
EXPECT_EQ(proj.columns_count(), 4);
// Further checks on projection matrix elements could be added
}
// Test other member functions
TEST_F(UnitTestMatrix, Set)
{
m1.Set(3.0f);
EXPECT_FLOAT_EQ(m1.At(0, 0), 3.0f);
EXPECT_FLOAT_EQ(m1.At(1, 1), 3.0f);
m1.set(3.0f);
EXPECT_FLOAT_EQ(m1.at(0, 0), 3.0f);
EXPECT_FLOAT_EQ(m1.at(1, 1), 3.0f);
}
TEST_F(UnitTestMatrix, Sum)
{
const float sum = m2.Sum();
const float sum = m2.sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMatrix, Clear)
{
m2.Clear();
EXPECT_FLOAT_EQ(m2.At(0, 0), 0.0f);
EXPECT_FLOAT_EQ(m2.At(1, 1), 0.0f);
m2.clear();
EXPECT_FLOAT_EQ(m2.at(0, 0), 0.0f);
EXPECT_FLOAT_EQ(m2.at(1, 1), 0.0f);
}
TEST_F(UnitTestMatrix, ToString)
{
const std::string str = m2.ToString();
const std::string str = m2.to_string();
EXPECT_FALSE(str.empty());
}
@@ -163,18 +163,18 @@ TEST_F(UnitTestMatrix, AssignmentOperator_Copy)
{
Matrix m3(2, 2);
m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, AssignmentOperator_Move)
{
Matrix m3(2, 2);
m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_EQ(m2.RowCount(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.ColumnsCount(), 0);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}

View File

@@ -4,13 +4,13 @@
TEST(UnitTestPrediction, PredictionTest)
{
constexpr omath::projectile_prediction::Target target{
.m_origin = {100, 0, 90}, .m_velocity = {0, 0, 0}, .m_isAirborne = false};
.m_origin = {100, 0, 90}, .m_velocity = {0, 0, 0}, .m_is_airborne = false};
constexpr omath::projectile_prediction::Projectile proj = {
.m_origin = {3, 2, 1}, .m_launchSpeed = 5000, .m_gravityScale = 0.4};
.m_origin = {3, 2, 1}, .m_launch_speed = 5000, .m_gravity_scale = 0.4};
const auto viewPoint =
omath::projectile_prediction::ProjPredEngineLegacy(400, 1.f / 1000.f, 50, 5.f).MaybeCalculateAimPoint(proj, target);
omath::projectile_prediction::ProjPredEngineLegacy(400, 1.f / 1000.f, 50, 5.f).maybe_calculate_aim_point(proj, target);
const auto [pitch, yaw, _] = proj.m_origin.ViewAngleTo(viewPoint.value()).AsTuple();
const auto [pitch, yaw, _] = proj.m_origin.view_angle_to(viewPoint.value()).as_tuple();
EXPECT_NEAR(42.547142, pitch, 0.01f);
EXPECT_NEAR(-1.181189, yaw, 0.01f);

View File

@@ -9,9 +9,9 @@
TEST(UnitTestProjection, Projection)
{
const auto x = omath::Angle<float, 0.f, 180.f, omath::AngleFlags::Clamped>::FromDegrees(90.f);
const auto x = omath::Angle<float, 0.f, 180.f, omath::AngleFlags::Clamped>::from_degrees(90.f);
auto cam = omath::source_engine::Camera({0, 0, 0}, omath::source_engine::ViewAngles{}, {1920.f, 1080.f}, x, 0.01f, 1000.f);
const auto projected = cam.WorldToScreen({1000, 0, 50});
const auto projected = cam.world_to_screen({1000, 0, 50});
std::print("{} {} {}", projected->x, projected->y, projected->z);
}

View File

@@ -68,14 +68,14 @@ TEST_F(UnitTestTriangle, Constructor)
TEST_F(UnitTestTriangle, CalculateNormal)
{
// For t1, the normal should point in the +Z direction (0, 0, 1) or (0, 0, -1)
const Vector3 normal_t1 = t1.CalculateNormal();
const Vector3 normal_t1 = t1.calculate_normal();
// Check if it's normalized and pointed along Z (sign can differ, so use absolute check)
EXPECT_NEAR(std::fabs(normal_t1.z), 1.0f, 1e-5f);
EXPECT_NEAR(normal_t1.Length(), 1.0f, 1e-5f);
EXPECT_NEAR(normal_t1.length(), 1.0f, 1e-5f);
// For t3, we expect the normal to be along +Z as well
const Vector3 normal_t3 = t3.CalculateNormal();
const Vector3 normal_t3 = t3.calculate_normal();
EXPECT_NEAR(std::fabs(normal_t3.z), 1.0f, 1e-5f);
}
@@ -83,29 +83,29 @@ TEST_F(UnitTestTriangle, CalculateNormal)
TEST_F(UnitTestTriangle, SideLengths)
{
// For t1 side lengths
EXPECT_FLOAT_EQ(t1.SideALength(), std::sqrt(1.0f)); // distance between (0,0,0) and (1,0,0)
EXPECT_FLOAT_EQ(t1.SideBLength(), std::sqrt(1.0f + 1.0f)); // distance between (4,5,6) & (7,8,9)... but we are testing t1, so let's be accurate:
EXPECT_FLOAT_EQ(t1.side_a_length(), std::sqrt(1.0f)); // distance between (0,0,0) and (1,0,0)
EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(1.0f + 1.0f)); // distance between (4,5,6) & (7,8,9)... but we are testing t1, so let's be accurate:
// Actually, for t1: vertex2=(1,0,0), vertex3=(0,1,0)
// Dist between (0,1,0) and (1,0,0) = sqrt((1-0)^2 + (0-1)^2) = sqrt(1 + 1) = sqrt(2)
EXPECT_FLOAT_EQ(t1.SideBLength(), std::sqrt(2.0f));
EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(2.0f));
// For t3, side a = distance between vertex1=(0,0,0) and vertex2=(2,0,0), which is 2
// side b = distance between vertex3=(0,2,0) and vertex2=(2,0,0), which is sqrt(2^2 + (-2)^2)= sqrt(8)= 2.828...
// We'll just check side a first:
EXPECT_FLOAT_EQ(t3.SideALength(), 2.0f);
EXPECT_FLOAT_EQ(t3.side_a_length(), 2.0f);
// Then side b:
EXPECT_FLOAT_EQ(t3.SideBLength(), std::sqrt(8.0f));
EXPECT_FLOAT_EQ(t3.side_b_length(), std::sqrt(8.0f));
}
// Test side vectors
TEST_F(UnitTestTriangle, SideVectors)
{
const Vector3 sideA_t1 = t1.SideAVector(); // m_vertex1 - m_vertex2
const Vector3 sideA_t1 = t1.side_a_vector(); // m_vertex1 - m_vertex2
EXPECT_FLOAT_EQ(sideA_t1.x, 0.0f - 1.0f);
EXPECT_FLOAT_EQ(sideA_t1.y, 0.0f - 0.0f);
EXPECT_FLOAT_EQ(sideA_t1.z, 0.0f - 0.0f);
const Vector3 sideB_t1 = t1.SideBVector(); // m_vertex3 - m_vertex2
const Vector3 sideB_t1 = t1.side_b_vector(); // m_vertex3 - m_vertex2
EXPECT_FLOAT_EQ(sideB_t1.x, 0.0f - 1.0f);
EXPECT_FLOAT_EQ(sideB_t1.y, 1.0f - 0.0f);
EXPECT_FLOAT_EQ(sideB_t1.z, 0.0f - 0.0f);
@@ -113,19 +113,19 @@ TEST_F(UnitTestTriangle, SideVectors)
TEST_F(UnitTestTriangle, IsRectangular)
{
EXPECT_TRUE(Triangle<Vector3<float>>({2,0,0}, {}, {0,2,0}).IsRectangular());
EXPECT_TRUE(Triangle<Vector3<float>>({2,0,0}, {}, {0,2,0}).is_rectangular());
}
// Test midpoint
TEST_F(UnitTestTriangle, MidPoint)
{
// For t1, midpoint of (0,0,0), (1,0,0), (0,1,0)
const Vector3 mid1 = t1.MidPoint();
const Vector3 mid1 = t1.mid_point();
EXPECT_FLOAT_EQ(mid1.x, (0.0f + 1.0f + 0.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid1.y, (0.0f + 0.0f + 1.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid1.z, 0.0f);
// For t2, midpoint of (1,2,3), (4,5,6), (7,8,9)
const Vector3 mid2 = t2.MidPoint();
const Vector3 mid2 = t2.mid_point();
EXPECT_FLOAT_EQ(mid2.x, (1.0f + 4.0f + 7.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid2.y, (2.0f + 5.0f + 8.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid2.z, (3.0f + 6.0f + 9.0f) / 3.0f);

View File

@@ -150,76 +150,76 @@ TEST_F(UnitTestVector2, SubtractionAssignmentOperator_Float)
// Test other member functions
TEST_F(UnitTestVector2, DistTo)
{
const float dist = v1.DistTo(v2);
const float dist = v1.distance_to(v2);
EXPECT_FLOAT_EQ(dist, std::sqrt(18.0f));
}
TEST_F(UnitTestVector2, DistTo_SamePoint)
{
const float dist = v1.DistTo(v1);
const float dist = v1.distance_to(v1);
EXPECT_FLOAT_EQ(dist, 0.0f);
}
TEST_F(UnitTestVector2, DistToSqr)
{
constexpr float distSqr = Vector2(1.0f, 2.0f).DistToSqr(Vector2(4.0f, 5.0f));
constexpr float distSqr = Vector2(1.0f, 2.0f).distance_to_sqr(Vector2(4.0f, 5.0f));
EXPECT_FLOAT_EQ(distSqr, 18.0f);
}
TEST_F(UnitTestVector2, DistToSqr_SamePoint)
{
constexpr float distSqr = Vector2(1.0f, 2.0f).DistToSqr(Vector2(1.0f, 2.0f));
constexpr float distSqr = Vector2(1.0f, 2.0f).distance_to_sqr(Vector2(1.0f, 2.0f));
EXPECT_FLOAT_EQ(distSqr, 0.0f);
}
TEST_F(UnitTestVector2, DotProduct)
{
constexpr float dot = Vector2(1.0f, 2.0f).Dot(Vector2(4.0f, 5.0f));
constexpr float dot = Vector2(1.0f, 2.0f).dot(Vector2(4.0f, 5.0f));
EXPECT_FLOAT_EQ(dot, 14.0f);
}
TEST_F(UnitTestVector2, DotProduct_PerpendicularVectors)
{
constexpr float dot = Vector2(1.0f, 0.0f).Dot(Vector2(0.0f, 1.0f));
constexpr float dot = Vector2(1.0f, 0.0f).dot(Vector2(0.0f, 1.0f));
EXPECT_FLOAT_EQ(dot, 0.0f);
}
TEST_F(UnitTestVector2, DotProduct_ParallelVectors)
{
constexpr float dot = Vector2(1.0f, 1.0f).Dot(Vector2(2.0f, 2.0f));
constexpr float dot = Vector2(1.0f, 1.0f).dot(Vector2(2.0f, 2.0f));
EXPECT_FLOAT_EQ(dot, 4.0f);
}
TEST_F(UnitTestVector2, Length)
{
const float length = v1.Length();
const float length = v1.length();
EXPECT_FLOAT_EQ(length, std::sqrt(5.0f));
}
TEST_F(UnitTestVector2, Length_ZeroVector)
{
constexpr Vector2 v_zero(0.0f, 0.0f);
const float length = v_zero.Length();
const float length = v_zero.length();
EXPECT_FLOAT_EQ(length, 0.0f);
}
TEST_F(UnitTestVector2, Length_LargeValues)
{
constexpr Vector2 v_large(FLT_MAX, FLT_MAX);
const float length = v_large.Length();
const float length = v_large.length();
EXPECT_TRUE(std::isinf(length));
}
TEST_F(UnitTestVector2, LengthSqr)
{
constexpr float lengthSqr = Vector2(1.0f, 2.0f).LengthSqr();
constexpr float lengthSqr = Vector2(1.0f, 2.0f).length_sqr();
EXPECT_FLOAT_EQ(lengthSqr, 5.0f);
}
TEST_F(UnitTestVector2, Abs)
{
Vector2 v3(-1.0f, -2.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
}
@@ -227,7 +227,7 @@ TEST_F(UnitTestVector2, Abs)
TEST_F(UnitTestVector2, Abs_PositiveValues)
{
Vector2 v3(1.0f, 2.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
}
@@ -235,26 +235,26 @@ TEST_F(UnitTestVector2, Abs_PositiveValues)
TEST_F(UnitTestVector2, Abs_ZeroValues)
{
Vector2 v3(0.0f, 0.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 0.0f);
EXPECT_FLOAT_EQ(v3.y, 0.0f);
}
TEST_F(UnitTestVector2, Sum)
{
constexpr float sum = Vector2(1.0f, 2.0f).Sum();
constexpr float sum = Vector2(1.0f, 2.0f).sum();
EXPECT_FLOAT_EQ(sum, 3.0f);
}
TEST_F(UnitTestVector2, Sum_NegativeValues)
{
constexpr float sum = Vector2(-1.0f, -2.0f).Sum();
constexpr float sum = Vector2(-1.0f, -2.0f).sum();
EXPECT_FLOAT_EQ(sum, -3.0f);
}
TEST_F(UnitTestVector2, Normalized)
{
const Vector2 v3 = v1.Normalized();
const Vector2 v3 = v1.normalized();
EXPECT_NEAR(v3.x, 0.44721f, 0.0001f);
EXPECT_NEAR(v3.y, 0.89443f, 0.0001f);
}
@@ -262,7 +262,7 @@ TEST_F(UnitTestVector2, Normalized)
TEST_F(UnitTestVector2, Normalized_ZeroVector)
{
constexpr Vector2 v_zero(0.0f, 0.0f);
const Vector2 v_norm = v_zero.Normalized();
const Vector2 v_norm = v_zero.normalized();
EXPECT_FLOAT_EQ(v_norm.x, 0.0f);
EXPECT_FLOAT_EQ(v_norm.y, 0.0f);
}
@@ -270,7 +270,7 @@ TEST_F(UnitTestVector2, Normalized_ZeroVector)
// Test AsTuple method
TEST_F(UnitTestVector2, AsTuple)
{
const auto tuple = v1.AsTuple();
const auto tuple = v1.as_tuple();
EXPECT_FLOAT_EQ(std::get<0>(tuple), v1.x);
EXPECT_FLOAT_EQ(std::get<1>(tuple), v1.y);
}
@@ -347,7 +347,7 @@ TEST_F(UnitTestVector2, NegationOperator_ZeroVector)
}
// Static assertions (compile-time checks)
static_assert(Vector2(1.0f, 2.0f).LengthSqr() == 5.0f, "LengthSqr should be 5");
static_assert(Vector2(1.0f, 2.0f).Dot(Vector2(4.0f, 5.0f)) == 14.0f, "Dot product should be 14");
static_assert(Vector2(4.0f, 5.0f).DistToSqr(Vector2(1.0f, 2.0f)) == 18.0f, "DistToSqr should be 18");
static_assert(Vector2(-1.0f, -2.0f).Abs() == Vector2(1.0f, 2.0f), "Abs should convert negative values to positive");
static_assert(Vector2(1.0f, 2.0f).length_sqr() == 5.0f, "LengthSqr should be 5");
static_assert(Vector2(1.0f, 2.0f).dot(Vector2(4.0f, 5.0f)) == 14.0f, "Dot product should be 14");
static_assert(Vector2(4.0f, 5.0f).distance_to_sqr(Vector2(1.0f, 2.0f)) == 18.0f, "DistToSqr should be 18");
static_assert(Vector2(-1.0f, -2.0f).abs() == Vector2(1.0f, 2.0f), "Abs should convert negative values to positive");

View File

@@ -164,26 +164,26 @@ TEST_F(UnitTestVector3, NegationOperator)
// Test other member functions
TEST_F(UnitTestVector3, DistToSqr)
{
constexpr auto distSqr = Vector3(1.0f, 2.0f, 3.0f).DistToSqr(Vector3(4.0f, 5.0f, 6.0f));
constexpr auto distSqr = Vector3(1.0f, 2.0f, 3.0f).distance_to_sqr(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(distSqr, 27.0f);
}
TEST_F(UnitTestVector3, DotProduct)
{
constexpr auto dot = Vector3(1.0f, 2.0f, 3.0f).Dot(Vector3(4.0f, 5.0f, 6.0f));
constexpr auto dot = Vector3(1.0f, 2.0f, 3.0f).dot(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(dot, 32.0f);
}
TEST_F(UnitTestVector3, LengthSqr)
{
constexpr auto lengthSqr = Vector3(1.0f, 2.0f, 3.0f).LengthSqr();
constexpr auto lengthSqr = Vector3(1.0f, 2.0f, 3.0f).length_sqr();
EXPECT_FLOAT_EQ(lengthSqr, 14.0f);
}
TEST_F(UnitTestVector3, Abs)
{
auto v3 = Vector3(-1.0f, -2.0f, -3.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
EXPECT_FLOAT_EQ(v3.z, 3.0f);
@@ -191,19 +191,19 @@ TEST_F(UnitTestVector3, Abs)
TEST_F(UnitTestVector3, Sum)
{
constexpr auto sum = Vector3(1.0f, 2.0f, 3.0f).Sum();
constexpr auto sum = Vector3(1.0f, 2.0f, 3.0f).sum();
EXPECT_FLOAT_EQ(sum, 6.0f);
}
TEST_F(UnitTestVector3, Sum2D)
{
constexpr auto sum2D = Vector3(1.0f, 2.0f, 3.0f).Sum2D();
constexpr auto sum2D = Vector3(1.0f, 2.0f, 3.0f).sum_2d();
EXPECT_FLOAT_EQ(sum2D, 3.0f);
}
TEST_F(UnitTestVector3, CrossProduct)
{
constexpr Vector3 v3 = Vector3(1.0f, 2.0f, 3.0f).Cross(Vector3(4.0f, 5.0f, 6.0f));
constexpr Vector3 v3 = Vector3(1.0f, 2.0f, 3.0f).cross(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(v3.x, -3.0f);
EXPECT_FLOAT_EQ(v3.y, 6.0f);
EXPECT_FLOAT_EQ(v3.z, -3.0f);
@@ -298,41 +298,41 @@ TEST_F(UnitTestVector3, Division_WithNaN)
// Test Length, Length2D, and Normalized
TEST_F(UnitTestVector3, Length)
{
const float length = v1.Length();
const float length = v1.length();
EXPECT_FLOAT_EQ(length, std::sqrt(14.0f));
}
TEST_F(UnitTestVector3, Length_ZeroVector)
{
constexpr Vector3 v_zero(0.0f, 0.0f, 0.0f);
const float length = v_zero.Length();
const float length = v_zero.length();
EXPECT_FLOAT_EQ(length, 0.0f);
}
TEST_F(UnitTestVector3, Length_LargeValues)
{
constexpr Vector3 v_large(FLT_MAX, FLT_MAX, FLT_MAX);
const float length = v_large.Length();
const float length = v_large.length();
EXPECT_TRUE(std::isinf(length));
}
TEST_F(UnitTestVector3, Length2D)
{
const float length2D = v1.Length2D();
const float length2D = v1.length_2d();
EXPECT_FLOAT_EQ(length2D, std::sqrt(5.0f));
}
TEST_F(UnitTestVector3, Normalized)
{
const Vector3 v_norm = v1.Normalized();
const float length = v_norm.Length();
const Vector3 v_norm = v1.normalized();
const float length = v_norm.length();
EXPECT_NEAR(length, 1.0f, 0.0001f);
}
TEST_F(UnitTestVector3, Normalized_ZeroVector)
{
constexpr Vector3 v_zero(0.0f, 0.0f, 0.0f);
const Vector3 v_norm = v_zero.Normalized();
const Vector3 v_norm = v_zero.normalized();
EXPECT_FLOAT_EQ(v_norm.x, 0.0f);
EXPECT_FLOAT_EQ(v_norm.y, 0.0f);
EXPECT_FLOAT_EQ(v_norm.z, 0.0f);
@@ -343,7 +343,7 @@ TEST_F(UnitTestVector3, CrossProduct_ParallelVectors)
{
constexpr Vector3 v_a(1.0f, 2.0f, 3.0f);
constexpr Vector3 v_b = v_a * 2.0f; // Parallel to v_a
constexpr Vector3 cross = v_a.Cross(v_b);
constexpr Vector3 cross = v_a.cross(v_b);
EXPECT_FLOAT_EQ(cross.x, 0.0f);
EXPECT_FLOAT_EQ(cross.y, 0.0f);
EXPECT_FLOAT_EQ(cross.z, 0.0f);
@@ -353,7 +353,7 @@ TEST_F(UnitTestVector3, CrossProduct_OrthogonalVectors)
{
constexpr Vector3 v_a(1.0f, 0.0f, 0.0f);
constexpr Vector3 v_b(0.0f, 1.0f, 0.0f);
constexpr Vector3 cross = v_a.Cross(v_b);
constexpr Vector3 cross = v_a.cross(v_b);
EXPECT_FLOAT_EQ(cross.x, 0.0f);
EXPECT_FLOAT_EQ(cross.y, 0.0f);
EXPECT_FLOAT_EQ(cross.z, 1.0f);
@@ -381,7 +381,7 @@ TEST_F(UnitTestVector3, Subtraction_NegativeValues)
// Test AsTuple method
TEST_F(UnitTestVector3, AsTuple)
{
const auto tuple = v1.AsTuple();
const auto tuple = v1.as_tuple();
EXPECT_FLOAT_EQ(std::get<0>(tuple), v1.x);
EXPECT_FLOAT_EQ(std::get<1>(tuple), v1.y);
EXPECT_FLOAT_EQ(std::get<2>(tuple), v1.z);
@@ -390,20 +390,20 @@ TEST_F(UnitTestVector3, AsTuple)
// Test AsTuple method
TEST_F(UnitTestVector3, AngleBeatween)
{
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).AngleBetween({1, 0 ,0}).value().AsDegrees(), 90.0f);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).AngleBetween({0.0f, 0.0f, 1.0f}).value().AsDegrees(), 0.0f);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).AngleBetween({0.0f, 0.0f, 1.0f}).has_value());
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).angle_between({1, 0 ,0}).value().as_degrees(), 90.0f);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).angle_between({0.0f, 0.0f, 1.0f}).value().as_degrees(), 0.0f);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).angle_between({0.0f, 0.0f, 1.0f}).has_value());
}
TEST_F(UnitTestVector3, IsPerpendicular)
{
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).IsPerpendicular({1, 0 ,0}), true);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).IsPerpendicular({0.0f, 0.0f, 1.0f}), false);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).IsPerpendicular({0.0f, 0.0f, 1.0f}));
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).is_perpendicular({1, 0 ,0}), true);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).is_perpendicular({0.0f, 0.0f, 1.0f}), false);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).is_perpendicular({0.0f, 0.0f, 1.0f}));
}
// Static assertions (compile-time checks)
static_assert(Vector3(1.0f, 2.0f, 3.0f).LengthSqr() == 14.0f, "LengthSqr should be 14");
static_assert(Vector3(1.0f, 2.0f, 3.0f).Dot(Vector3(4.0f, 5.0f, 6.0f)) == 32.0f, "Dot product should be 32");
static_assert(Vector3(4.0f, 5.0f, 6.0f).DistToSqr(Vector3(1.0f, 2.0f, 3.0f)) == 27.0f, "DistToSqr should be 27");
static_assert(Vector3(-1.0f, -2.0f, -3.0f).Abs() == Vector3(1.0f, 2.0f, 3.0f), "Abs should convert negative values to positive");
static_assert(Vector3(1.0f, 2.0f, 3.0f).length_sqr() == 14.0f, "LengthSqr should be 14");
static_assert(Vector3(1.0f, 2.0f, 3.0f).dot(Vector3(4.0f, 5.0f, 6.0f)) == 32.0f, "Dot product should be 32");
static_assert(Vector3(4.0f, 5.0f, 6.0f).distance_to_sqr(Vector3(1.0f, 2.0f, 3.0f)) == 27.0f, "DistToSqr should be 27");
static_assert(Vector3(-1.0f, -2.0f, -3.0f).abs() == Vector3(1.0f, 2.0f, 3.0f), "Abs should convert negative values to positive");

View File

@@ -180,20 +180,20 @@ TEST_F(UnitTestVector4, NegationOperator)
// Test other member functions
TEST_F(UnitTestVector4, LengthSqr)
{
constexpr float lengthSqr = Vector4(1.0f, 2.0f, 3.0f, 4.0f).LengthSqr();
constexpr float lengthSqr = Vector4(1.0f, 2.0f, 3.0f, 4.0f).length_sqr();
EXPECT_FLOAT_EQ(lengthSqr, 30.0f);
}
TEST_F(UnitTestVector4, DotProduct)
{
constexpr float dot = Vector4(1.0f, 2.0f, 3.0f, 4.0f).Dot(Vector4(4.0f, 5.0f, 6.0f, 7.0f));
constexpr float dot = Vector4(1.0f, 2.0f, 3.0f, 4.0f).dot(Vector4(4.0f, 5.0f, 6.0f, 7.0f));
EXPECT_FLOAT_EQ(dot, 60.0f);
}
TEST_F(UnitTestVector4, Abs)
{
Vector4 v3 = Vector4(-1.0f, -2.0f, -3.0f, -4.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
EXPECT_FLOAT_EQ(v3.z, 3.0f);
@@ -202,14 +202,14 @@ TEST_F(UnitTestVector4, Abs)
TEST_F(UnitTestVector4, Sum)
{
constexpr float sum = Vector4(1.0f, 2.0f, 3.0f, 4.0f).Sum();
constexpr float sum = Vector4(1.0f, 2.0f, 3.0f, 4.0f).sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestVector4, Clamp)
{
Vector4 v3 = Vector4(1.0f, 2.0f, 3.0f, 4.0f);
v3.Clamp(1.5f, 2.5f);
v3.clamp(1.5f, 2.5f);
EXPECT_FLOAT_EQ(v3.x, 1.5f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
EXPECT_FLOAT_EQ(v3.z, 2.5f);