Files
omath/docs/linear_algebra/mat.md
Orange 95c0873b8c Documents view angle struct and related API
Adds documentation for the `omath::ViewAngles` struct,
clarifying its purpose, common usage patterns,
and the definition of the types of pitch, yaw and roll.

Also, adds short explanations of how to use ViewAngles and what tradeoffs exist
between using raw float types and strongly typed Angle<> types.
2025-11-01 09:12:04 +03:00

429 lines
12 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# `omath::Mat` — Matrix class (C++20/23)
> Header: your projects `mat.hpp` (requires `vector3.hpp`)
> Namespace: `omath`
> Requires: **C++23** (uses multi-parameter `operator[]`)
> SIMD (optional): define **`OMATH_USE_AVX2`** to enable AVX2-accelerated multiplication for `float`/`double`.
---
## Overview
`omath::Mat<Rows, Columns, Type, StoreType>` is a compile-time, fixed-size matrix with:
* **Row/column counts** as template parameters (no heap allocations).
* **Row-major** or **column-major** storage (compile-time via `MatStoreType`).
* **Arithmetic** and **linear algebra**: matrix × matrix, scalar ops, transpose, determinant, inverse (optional), etc.
* **Transform helpers**: translation, axis rotations, look-at, perspective & orthographic projections.
* **I/O helpers**: `to_string`/`to_wstring`/`to_u8string` and `std::formatter` specializations.
---
## Template parameters
| Parameter | Description | Default |
| ----------- | ------------------------------------------------------------------------ | ----------- |
| `Rows` | Number of rows (size_t, compile-time) | — |
| `Columns` | Number of columns (size_t, compile-time) | — |
| `Type` | Element type (arithmetic) | `float` |
| `StoreType` | Storage order: `MatStoreType::ROW_MAJOR` or `MatStoreType::COLUMN_MAJOR` | `ROW_MAJOR` |
```cpp
enum class MatStoreType : uint8_t { ROW_MAJOR = 0, COLUMN_MAJOR };
```
---
## Quick start
```cpp
#include "mat.hpp"
using omath::Mat;
// 4x4 float, row-major
Mat<4,4> I = {
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1},
};
// Multiply 4x4 transforms
Mat<4,4> A = { {1,2,3,0},{0,1,4,0},{5,6,0,0},{0,0,0,1} };
Mat<4,4> B = { {2,0,0,0},{0,2,0,0},{0,0,2,0},{0,0,0,1} };
Mat<4,4> C = A * B; // matrix × matrix
// Scalar ops
auto D = C * 0.5f; // scale all entries
// Indexing (C++23 multi-parameter operator[])
float a03 = A[0,3]; // same as A.at(0,3)
A[1,2] = 42.0f;
// Transpose, determinant, inverse
auto AT = A.transposed();
float det = A.determinant(); // only for square matrices
auto inv = A.inverted(); // std::optional<Mat>; std::nullopt if non-invertible
```
> **Note**
> Multiplication requires the **same** `StoreType` and `Type` on both operands, and dimensions must match at compile time.
---
## Construction
```cpp
Mat(); // zero-initialized
Mat(std::initializer_list<std::initializer_list<Type>> rows);
explicit Mat(const Type* raw_data); // copies Rows*Columns elements
Mat(const Mat&); Mat(Mat&&);
```
* **Zeroing/setting**
```cpp
m.clear(); // set all entries to 0
m.set(3.14f); // set all entries to a value
```
* **Shape & metadata**
```cpp
Mat<>::row_count(); // constexpr size_t
Mat<>::columns_count(); // constexpr size_t
Mat<>::size(); // constexpr MatSize {rows, columns}
Mat<>::get_store_ordering(); // constexpr MatStoreType
using ContainedType = Type; // alias
```
---
## Element access
```cpp
T& at(size_t r, size_t c);
T const& at(size_t r, size_t c) const;
T& operator[](size_t r, size_t c); // C++23
T const& operator[](size_t r, size_t c) const; // C++23
```
> **Bounds checking**
> In debug builds you may enable/disable range checks via your compile-time macros (see the source guard around `at()`).
---
## Arithmetic
* **Matrix × matrix**
```cpp
// (Rows x Columns) * (Columns x OtherColumns) -> (Rows x OtherColumns)
template<size_t OtherColumns>
Mat<Rows, OtherColumns, Type, StoreType>
operator*(const Mat<Columns, OtherColumns, Type, StoreType>&) const;
```
* Complexity: `O(Rows * Columns * OtherColumns)`.
* AVX2-accelerated when `OMATH_USE_AVX2` is defined and `Type` is `float` or `double`.
* **Scalars**
```cpp
Mat operator*(const Type& s) const; Mat& operator*=(const Type& s);
Mat operator/(const Type& s) const; Mat& operator/=(const Type& s);
```
* **Transpose**
```cpp
Mat<Columns, Rows, Type, StoreType> transposed() const noexcept;
```
* **Determinant (square only)**
```cpp
Type determinant() const; // 1x1, 2x2 fast path; larger uses Laplace expansion
```
* **Inverse (square only)**
```cpp
std::optional<Mat> inverted() const; // nullopt if det == 0
```
* **Minors & cofactors (square only)**
```cpp
Mat<Rows-1, Columns-1, Type, StoreType> strip(size_t r, size_t c) const;
Type minor(size_t r, size_t c) const;
Type alg_complement(size_t r, size_t c) const; // cofactor
```
* **Utilities**
```cpp
Type sum() const noexcept;
auto& raw_array(); // std::array<Type, Rows*Columns>&
auto const& raw_array() const;
```
* **Comparison / formatting**
```cpp
bool operator==(const Mat&) const;
bool operator!=(const Mat&) const;
std::string to_string() const noexcept;
std::wstring to_wstring() const noexcept;
std::u8string to_u8string() const noexcept;
```
// std::formatter specialization provided for char, wchar_t, char8_t
````
---
## Storage order notes
- **Row-major**: `index = row * Columns + column`
- **Column-major**: `index = row + column * Rows`
Choose one **consistently** across your math types and shader conventions. Mixed orders are supported by the type system but not for cross-multiplying (store types must match).
---
## Transform helpers
### From vectors
```cpp
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<1,4,T,St> mat_row_from_vector(const Vector3<T>& v);
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,1,T,St> mat_column_from_vector(const Vector3<T>& v);
````
### Translation
```cpp
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_translation(const Vector3<T>& d) noexcept;
```
### Axis rotations
```cpp
// Angle type must provide angle.cos() and angle.sin()
template<class T=float, MatStoreType St=ROW_MAJOR, class Angle>
Mat<4,4,T,St> mat_rotation_axis_x(const Angle& a) noexcept;
template<class T=float, MatStoreType St=ROW_MAJOR, class Angle>
Mat<4,4,T,St> mat_rotation_axis_y(const Angle& a) noexcept;
template<class T=float, MatStoreType St=ROW_MAJOR, class Angle>
Mat<4,4,T,St> mat_rotation_axis_z(const Angle& a) noexcept;
```
### Camera/view
```cpp
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_camera_view(const Vector3<T>& forward,
const Vector3<T>& right,
const Vector3<T>& up,
const Vector3<T>& camera_origin) noexcept;
```
### Perspective projections
```cpp
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_perspective_left_handed (float fov_deg, float aspect, float near, float far) noexcept;
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_perspective_right_handed(float fov_deg, float aspect, float near, float far) noexcept;
```
### Orthographic projections
```cpp
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_ortho_left_handed (T left, T right, T bottom, T top, T near, T far) noexcept;
template<class T=float, MatStoreType St=ROW_MAJOR>
Mat<4,4,T,St> mat_ortho_right_handed(T left, T right, T bottom, T top, T near, T far) noexcept;
```
### Look-at matrices
```cpp
template<class T=float, MatStoreType St=COLUMN_MAJOR>
Mat<4,4,T,St> mat_look_at_left_handed (const Vector3<T>& eye,
const Vector3<T>& center,
const Vector3<T>& up);
template<class T=float, MatStoreType St=COLUMN_MAJOR>
Mat<4,4,T,St> mat_look_at_right_handed(const Vector3<T>& eye,
const Vector3<T>& center,
const Vector3<T>& up);
```
---
## Screen-space helper
```cpp
template<class Type=float>
static constexpr Mat<4,4> to_screen_mat(const Type& screen_w, const Type& screen_h) noexcept;
// Maps NDC to screen space (origin top-left, y down)
```
---
## Examples
### 1) Building a left-handed camera and perspective
```cpp
using V3 = omath::Vector3<float>;
using M4 = omath::Mat<4,4,float, omath::MatStoreType::COLUMN_MAJOR>;
V3 eye{0, 1, -5}, center{0, 0, 0}, up{0, 1, 0};
M4 view = omath::mat_look_at_left_handed<float, omath::MatStoreType::COLUMN_MAJOR>(eye, center, up);
float fov = 60.f, aspect = 16.f/9.f, n = 0.1f, f = 100.f;
M4 proj = omath::mat_perspective_left_handed<float, omath::MatStoreType::COLUMN_MAJOR>(fov, aspect, n, f);
// final VP
M4 vp = proj * view;
```
### 2) Inverting a transform safely
```cpp
omath::Mat<4,4> T = omath::mat_translation(omath::Vector3<float>{2,3,4});
if (auto inv = T.inverted()) {
// use *inv
} else {
// handle non-invertible
}
```
### 3) Formatting for logs
```cpp
omath::Mat<2,2> A = { {1,2},{3,4} };
std::string s = A.to_string(); // "[[ 1.000, 2.000]\n [ 3.000, 4.000]]"
std::string f = std::format("A = {}", A); // uses std::formatter
```
---
## Performance
* **Cache-friendly kernels** per storage order when AVX2 is not enabled.
* **AVX2 path** (`OMATH_USE_AVX2`) for `float`/`double` implements FMAs with 256-bit vectors for both row-major and column-major multiplication.
* Complexity for `A(R×K) * B(K×C)`: **O(RKC)** regardless of storage order.
---
## Constraints & concepts
```cpp
template<typename M1, typename M2>
concept MatTemplateEqual =
(M1::rows == M2::rows) &&
(M1::columns == M2::columns) &&
std::is_same_v<typename M1::value_type, typename M2::value_type> &&
(M1::store_type == M2::store_type);
```
> Use this concept to constrain generic functions that operate on like-shaped matrices.
---
## Exceptions
* `std::invalid_argument` — initializer list dimensions mismatch.
* `std::out_of_range` — out-of-bounds in `at()` when bounds checking is active (see source guard).
* `inverted()` does **not** throw; returns `std::nullopt` if `determinant() == 0`.
---
## Build switches
* **`OMATH_USE_AVX2`** — enable AVX2 vectorized multiplication paths (`<immintrin.h>` required).
* **Debug checks** — the `at()` method contains a conditional range check; refer to the preprocessor guard in the code to enable/disable in your configuration.
---
## Known requirements & interoperability
* **C++23** is required for multi-parameter `operator[]`. If you target pre-C++23, use `at(r,c)` instead.
* All binary operations require matching `Type` and `StoreType`. Convert explicitly if needed.
---
## See also
* `omath::Vector3<T>`
* Projection helpers: `mat_perspective_*`, `mat_ortho_*`
* View helpers: `mat_look_at_*`, `mat_camera_view`
* Construction helpers: `mat_row_from_vector`, `mat_column_from_vector`, `mat_translation`, `mat_rotation_axis_*`
---
## Appendix: API summary (signatures)
```cpp
// Core
Mat(); Mat(const Mat&); Mat(Mat&&);
Mat(std::initializer_list<std::initializer_list<Type>>);
explicit Mat(const Type* raw);
Mat& operator=(const Mat&); Mat& operator=(Mat&&);
static constexpr size_t row_count();
static constexpr size_t columns_count();
static consteval MatSize size();
static constexpr MatStoreType get_store_ordering();
T& at(size_t r, size_t c);
T const& at(size_t r, size_t c) const;
T& operator[](size_t r, size_t c);
T const& operator[](size_t r, size_t c) const;
void clear();
void set(const Type& v);
Type sum() const noexcept;
template<size_t OC> Mat<Rows,OC,Type,StoreType> operator*(const Mat<Columns,OC,Type,StoreType>&) const;
Mat& operator*=(const Type&); Mat operator*(const Type&) const;
Mat& operator/=(const Type&); Mat operator/(const Type&) const;
Mat<Columns,Rows,Type,StoreType> transposed() const noexcept;
Type determinant() const; // square only
std::optional<Mat> inverted() const; // square only
Mat<Rows-1,Columns-1,Type,StoreType> strip(size_t r, size_t c) const;
Type minor(size_t r, size_t c) const;
Type alg_complement(size_t r, size_t c) const;
auto& raw_array(); auto const& raw_array() const;
std::string to_string() const noexcept;
std::wstring to_wstring() const noexcept;
std::u8string to_u8string() const noexcept;
bool operator==(const Mat&) const;
bool operator!=(const Mat&) const;
// Helpers (see sections above)
```
---
*Last updated: 31 Oct 2025*