Files
omath/docs/collision/mesh_collider.md
2025-11-13 15:19:36 +00:00

372 lines
9.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# `omath::collision::MeshCollider` — Convex hull collider for meshes
> Header: `omath/collision/mesh_collider.hpp`
> Namespace: `omath::collision`
> Depends on: `omath::primitives::Mesh`, `omath::Vector3<T>`
> Purpose: wrap a mesh to provide collision detection support for GJK/EPA
---
## Overview
`MeshCollider` wraps a `Mesh` object to provide the **support function** interface required by the GJK and EPA collision detection algorithms. The support function finds the vertex of the mesh farthest along a given direction, which is essential for constructing Minkowski difference simplices.
**Important**: `MeshCollider` assumes the mesh represents a **convex hull**. For non-convex shapes, you must either:
* Decompose into convex parts
* Use the convex hull of the mesh
* Use a different collision detection algorithm
---
## Template Declaration
```cpp
template<class MeshType>
class MeshCollider;
```
### MeshType Requirements
The `MeshType` must be an instantiation of `omath::primitives::Mesh` or provide:
```cpp
struct MeshType {
using NumericType = /* float, double, etc. */;
std::vector<Vector3<NumericType>> m_vertex_buffer;
// Transform vertex from local to world space
Vector3<NumericType> vertex_to_world_space(const Vector3<NumericType>&) const;
};
```
Common types:
* `omath::source_engine::Mesh`
* `omath::unity_engine::Mesh`
* `omath::unreal_engine::Mesh`
* `omath::frostbite_engine::Mesh`
* `omath::iw_engine::Mesh`
* `omath::opengl_engine::Mesh`
---
## Type Aliases
```cpp
using NumericType = typename MeshType::NumericType;
using VertexType = Vector3<NumericType>;
```
* `NumericType` — scalar type (typically `float`)
* `VertexType` — 3D vector type for vertices
---
## Constructor
```cpp
explicit MeshCollider(MeshType mesh);
```
Creates a collider from a mesh. The mesh is **moved** into the collider, so pass by value:
```cpp
omath::source_engine::Mesh my_mesh = /* ... */;
MeshCollider collider(std::move(my_mesh));
```
---
## Methods
### `find_furthest_vertex`
```cpp
[[nodiscard]]
const VertexType& find_furthest_vertex(const VertexType& direction) const;
```
Finds the vertex in the mesh's **local space** that has the maximum dot product with `direction`.
**Algorithm**: Linear search through all vertices (O(n) where n is vertex count).
**Returns**: Const reference to the vertex in `m_vertex_buffer`.
---
### `find_abs_furthest_vertex`
```cpp
[[nodiscard]]
VertexType find_abs_furthest_vertex(const VertexType& direction) const;
```
Finds the vertex farthest along `direction` and transforms it to **world space**. This is the primary method used by GJK/EPA.
**Steps**:
1. Find furthest vertex in local space using `find_furthest_vertex`
2. Transform to world space using `mesh.vertex_to_world_space()`
**Returns**: Vertex position in world coordinates.
**Usage in GJK**:
```cpp
// GJK support function for Minkowski difference
VertexType support = collider_a.find_abs_furthest_vertex(direction)
- collider_b.find_abs_furthest_vertex(-direction);
```
---
## Usage Examples
### Basic Collision Detection
```cpp
using namespace omath::collision;
using namespace omath::source_engine;
// Create meshes with vertex data
std::vector<Vector3<float>> vbo_a = {
{-1, -1, -1}, {1, -1, -1}, {1, 1, -1}, {-1, 1, -1},
{-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}
};
std::vector<Vector3<std::size_t>> vao_a = /* face indices */;
Mesh mesh_a(vbo_a, vao_a);
mesh_a.set_origin({0, 0, 0});
Mesh mesh_b(vbo_b, vao_b);
mesh_b.set_origin({5, 0, 0}); // Positioned away from mesh_a
// Wrap in colliders
MeshCollider<Mesh> collider_a(std::move(mesh_a));
MeshCollider<Mesh> collider_b(std::move(mesh_b));
// Run GJK
auto result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
collider_a, collider_b
);
if (result.hit) {
std::cout << "Collision detected!\n";
}
```
### With EPA for Penetration Depth
```cpp
auto gjk_result = GjkAlgorithm<MeshCollider<Mesh>>::check_collision(
collider_a, collider_b
);
if (gjk_result.hit) {
auto epa_result = Epa<MeshCollider<Mesh>>::solve(
collider_a, collider_b, gjk_result.simplex
);
if (epa_result.success) {
std::cout << "Penetration: " << epa_result.depth << " units\n";
std::cout << "Normal: " << epa_result.normal << "\n";
}
}
```
### Custom Mesh Creation
```cpp
// Create a simple box mesh
std::vector<Vector3<float>> box_vertices = {
{-0.5f, -0.5f, -0.5f}, { 0.5f, -0.5f, -0.5f},
{ 0.5f, 0.5f, -0.5f}, {-0.5f, 0.5f, -0.5f},
{-0.5f, -0.5f, 0.5f}, { 0.5f, -0.5f, 0.5f},
{ 0.5f, 0.5f, 0.5f}, {-0.5f, 0.5f, 0.5f}
};
std::vector<Vector3<std::size_t>> box_indices = {
{0, 1, 2}, {0, 2, 3}, // Front face
{4, 6, 5}, {4, 7, 6}, // Back face
{0, 4, 5}, {0, 5, 1}, // Bottom face
{2, 6, 7}, {2, 7, 3}, // Top face
{0, 3, 7}, {0, 7, 4}, // Left face
{1, 5, 6}, {1, 6, 2} // Right face
};
using namespace omath::source_engine;
Mesh box_mesh(box_vertices, box_indices);
box_mesh.set_origin({10, 0, 0});
box_mesh.set_scale({2, 2, 2});
MeshCollider<Mesh> box_collider(std::move(box_mesh));
```
### Oriented Collision
```cpp
// Create rotated mesh
Mesh mesh(vertices, indices);
mesh.set_origin({5, 5, 5});
mesh.set_scale({1, 1, 1});
// Set rotation (engine-specific angles)
ViewAngles rotation;
rotation.pitch = PitchAngle::from_degrees(45.0f);
rotation.yaw = YawAngle::from_degrees(30.0f);
mesh.set_rotation(rotation);
// Collider automatically handles transformation
MeshCollider<Mesh> collider(std::move(mesh));
// Support function returns world-space vertices
auto support = collider.find_abs_furthest_vertex({0, 1, 0});
```
---
## Performance Considerations
### Linear Search
`find_furthest_vertex` performs a **linear search** through all vertices:
* **Time complexity**: O(n) per support query
* **GJK iterations**: ~10-20 support queries per collision test
* **Total cost**: O(k × n) where k is GJK iterations
For meshes with many vertices (>1000), consider:
* Using simpler proxy geometry (bounding box, convex hull with fewer vertices)
* Pre-computing hierarchical structures
* Using specialized collision shapes when possible
### Caching Opportunities
The implementation uses `std::ranges::max_element`, which is cache-friendly for contiguous vertex buffers. For optimal performance:
* Store vertices contiguously in memory
* Avoid pointer-based or scattered vertex storage
* Consider SoA (Structure of Arrays) layout for SIMD optimization
### World Space Transformation
The `vertex_to_world_space` call involves matrix multiplication:
* **Cost**: ~15-20 floating-point operations per vertex
* **Optimization**: The mesh caches its transformation matrix
* **Update cost**: Only recomputed when origin/rotation/scale changes
---
## Limitations & Edge Cases
### Convex Hull Requirement
**Critical**: GJK/EPA only work with **convex shapes**. If your mesh is concave:
#### Option 1: Convex Decomposition
```cpp
// Decompose concave mesh into convex parts
std::vector<Mesh> convex_parts = decompose_mesh(concave_mesh);
for (const auto& part : convex_parts) {
MeshCollider collider(part);
// Test each part separately
}
```
#### Option 2: Use Convex Hull
```cpp
// Compute convex hull of vertices
auto hull_vertices = compute_convex_hull(mesh.m_vertex_buffer);
Mesh hull_mesh(hull_vertices, hull_indices);
MeshCollider collider(std::move(hull_mesh));
```
#### Option 3: Different Algorithm
Use triangle-based collision (e.g., LineTracer) for true concave support.
### Empty Mesh
Behavior is undefined if `m_vertex_buffer` is empty. Always ensure:
```cpp
assert(!mesh.m_vertex_buffer.empty());
MeshCollider collider(std::move(mesh));
```
### Degenerate Meshes
* **Single vertex**: Treated as a point (degenerates to sphere collision)
* **Two vertices**: Line segment (may cause GJK issues)
* **Coplanar vertices**: Flat mesh; EPA may have convergence issues
**Recommendation**: Use at least 4 non-coplanar vertices for robustness.
---
## Coordinate Systems
`MeshCollider` supports different engine coordinate systems through the `MeshTrait`:
| Engine | Up Axis | Handedness | Rotation Order |
|--------|---------|------------|----------------|
| Source Engine | Z | Right-handed | Pitch/Yaw/Roll |
| Unity | Y | Left-handed | Pitch/Yaw/Roll |
| Unreal | Z | Left-handed | Roll/Pitch/Yaw |
| Frostbite | Y | Right-handed | Pitch/Yaw/Roll |
| IW Engine | Z | Right-handed | Pitch/Yaw/Roll |
| OpenGL | Y | Right-handed | Pitch/Yaw/Roll |
The `vertex_to_world_space` method handles these differences transparently.
---
## Advanced Usage
### Custom Support Function
For specialized collision shapes, implement a custom collider:
```cpp
class SphereCollider {
public:
using VertexType = Vector3<float>;
Vector3<float> center;
float radius;
VertexType find_abs_furthest_vertex(const VertexType& direction) const {
auto normalized = direction.normalized();
return center + normalized * radius;
}
};
// Use with GJK/EPA
auto result = GjkAlgorithm<SphereCollider>::check_collision(sphere_a, sphere_b);
```
### Debugging Support Queries
```cpp
class DebugMeshCollider : public MeshCollider<Mesh> {
public:
using MeshCollider::MeshCollider;
VertexType find_abs_furthest_vertex(const VertexType& direction) const {
auto result = MeshCollider::find_abs_furthest_vertex(direction);
std::cout << "Support query: direction=" << direction
<< " -> vertex=" << result << "\n";
return result;
}
};
```
---
## See Also
- [GJK Algorithm Documentation](gjk_algorithm.md) - Uses `MeshCollider` for collision detection
- [EPA Algorithm Documentation](epa_algorithm.md) - Uses `MeshCollider` for penetration depth
- [Simplex Documentation](simplex.md) - Data structure used by GJK
- [Mesh Documentation](../3d_primitives/mesh.md) - Underlying mesh primitive
- [Tutorials - Collision Detection](../tutorials.md#tutorial-4-collision-detection) - Complete collision tutorial
---
*Last updated: 13 Nov 2025*