Files
omath/source/Matrix.cpp

371 lines
8.8 KiB
C++

#include "omath/Matrix.h"
#include "omath/Vector3.h"
#include "omath/Angles.h"
#include <format>
#include <utility>
#include <stdexcept>
#include <utility>
#include <complex>
namespace omath
{
Matrix::Matrix(const size_t rows, const size_t columns)
{
if (rows == 0 and columns == 0)
throw std::runtime_error("Matrix cannot be 0x0");
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
Set(0.f);
}
Matrix::Matrix(const std::initializer_list<std::initializer_list<float>>& rows)
{
m_rows = rows.size();
m_columns = rows.begin()->size();
for (const auto& row : rows)
if (row.size() != m_columns)
throw std::invalid_argument("All rows must have the same number of columns.");
m_data = std::make_unique<float[]>(m_rows * m_columns);
size_t i = 0;
for (const auto& row : rows)
{
size_t j = 0;
for (const auto& value : row)
At(i, j++) = value;
++i;
}
}
Matrix::Matrix(const Matrix &other)
{
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
}
Matrix::Matrix(const size_t rows, const size_t columns, const float *pRaw)
{
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < rows*columns; ++i)
At(i / rows, i % columns) = pRaw[i];
}
size_t Matrix::RowCount() const noexcept
{
return m_rows;
}
Matrix::Matrix(Matrix &&other) noexcept
{
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::move(other.m_data);
other.m_rows = 0;
other.m_columns = 0;
other.m_data = nullptr;
}
size_t Matrix::ColumnsCount() const noexcept
{
return m_columns;
}
std::pair<size_t, size_t> Matrix::Size() const noexcept
{
return {RowCount(), ColumnsCount()};
}
float &Matrix::At(const size_t iRow, const size_t iCol)
{
return const_cast<float&>(std::as_const(*this).At(iRow, iCol));
}
float Matrix::Sum()
{
float sum = 0;
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
sum += At(i, j);
return sum;
}
const float &Matrix::At(const size_t iRow, const size_t iCol) const
{
return m_data[iRow * m_columns + iCol];
}
Matrix Matrix::operator*(const Matrix &other) const
{
if (m_columns != other.m_rows)
throw std::runtime_error("n != m");
auto outMat = Matrix(m_rows, other.m_columns);
for (size_t d = 0; d < m_rows; ++d)
for (size_t i = 0; i < other.m_columns; ++i)
for (size_t j = 0; j < other.m_rows; ++j)
outMat.At(d, i) += At(d, j) * other.At(j, i);
return outMat;
}
Matrix & Matrix::operator*=(const Matrix &other)
{
*this = *this * other;
return *this;
}
Matrix Matrix::operator*(const float f) const
{
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) *= f;
return out;
}
Matrix &Matrix::operator*=(const float f)
{
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
At(i, j) *= f;
return *this;
}
void Matrix::Clear()
{
Set(0.f);
}
Matrix &Matrix::operator=(const Matrix &other)
{
if (this == &other)
return *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
return *this;
}
Matrix &Matrix::operator=(Matrix &&other) noexcept
{
if (this == &other)
return *this;
m_rows = other.m_rows;
m_columns = other.m_columns;
m_data = std::move(other.m_data);
other.m_rows = 0;
other.m_columns = 0;
return *this;
}
Matrix &Matrix::operator/=(const float f)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) /= f;
return *this;
}
Matrix Matrix::operator/(const float f) const
{
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) /= f;
return out;
}
std::string Matrix::ToSrtring() const
{
std::string str;
for (size_t i = 0; i < m_rows; i++)
{
for (size_t j = 0; j < m_columns; ++j)
{
str += std::format("{:.1f}",At(i, j));
if (j == m_columns-1)
str += '\n';
else
str += ' ';
}
}
return str;
}
float Matrix::Determinant() const
{
if (m_rows + m_columns == 2)
return At(0, 0);
if (m_rows == 2 and m_columns == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
float fDet = 0;
for (size_t i = 0; i < m_columns; i++)
fDet += AlgComplement(0, i) * At(0, i);
return fDet;
}
float Matrix::AlgComplement(const size_t i, const size_t j) const
{
const auto tmp = Minor(i, j);
return ((i + j + 2) % 2 == 0) ? tmp : -tmp;
}
Matrix Matrix::Transpose() const
{
Matrix transposed = {m_columns, m_rows};
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
transposed.At(j, i) = At(i, j);
return transposed;
}
Matrix::~Matrix() = default;
void Matrix::Set(const float val)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = val;
}
Matrix Matrix::Strip(const size_t row, const size_t column) const
{
Matrix stripped = {m_rows - 1, m_columns - 1};
size_t iStripRowIndex = 0;
for (size_t i = 0; i < m_rows; i++)
{
if (i == row)
continue;
size_t iStripColumnIndex = 0;
for (size_t j = 0; j < m_columns; ++j)
{
if (j == column)
continue;
stripped.At(iStripRowIndex, iStripColumnIndex) = At(i, j);
iStripColumnIndex++;
}
iStripRowIndex++;
}
return stripped;
}
float Matrix::Minor(const size_t i, const size_t j) const
{
return Strip(i, j).Determinant();
}
Matrix Matrix::ToScreenMatrix(const float screenWidth, const float screenHeight)
{
return
{
{screenWidth / 2.f, 0.f, 0.f, 0.f},
{0.f, -screenHeight / 2.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{screenWidth / 2.f, screenHeight / 2.f, 0.f, 1.f},
};
}
Matrix Matrix::TranslationMatrix(const Vector3 &diff)
{
return
{
{1.f, 0.f, 0.f, 0.f},
{0.f, 1.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{diff.x, diff.y, diff.z, 1.f},
};
}
Matrix Matrix::OrientationMatrix(const Vector3 &forward, const Vector3 &right, const Vector3 &up)
{
return
{
{right.x, up.x, forward.x, 0.f},
{right.y, up.y, forward.y, 0.f},
{right.z, up.z, forward.z, 0.f},
{0.f, 0.f, 0.f, 1.f},
};
}
Matrix Matrix::ProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
return
{
{1.f / (aspectRatio*fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), 2.f * near * far / (far - near)},
{0.f, 0.f, -1.f, 0.f}
};
}
const float* Matrix::Raw() const
{
return m_data.get();
}
void Matrix::SetDataFromRaw(const float *pRawMatrix)
{
for (size_t i = 0; i < m_columns*m_rows; ++i)
At(i / m_rows, i % m_columns) = pRawMatrix[i];
}
Matrix::Matrix()
{
m_columns = 0;
m_rows = 0;
m_data = nullptr;
}
}