Compare commits

..

98 Commits

Author SHA1 Message Date
ea8f3d8d51 Adds contributing guidelines
Introduces a CONTRIBUTING.MD file to provide guidelines for
contributing to the project, including prerequisites, setup
instructions, pull request workflow, code style, and building
instructions.

xd

returned back

patch
2025-08-06 06:23:06 +03:00
08d2ccc03a Refactors Vector operations for type safety
Ensures type safety in Vector2, Vector3, and Vector4 operations by using static_cast(0) instead of relying on implicit conversions.
This prevents potential issues with different numeric types.

Adds from_im_vec2 and from_im_vec4 methods for creating vectors from ImVec2/ImVec4 types.
2025-08-06 06:06:42 +03:00
21ec23d77b patch 2025-08-06 05:56:09 +03:00
2c4ff37062 Merge pull request #52 from orange-cpp/feature/more_traits
Adds engine traits for projectile prediction
2025-08-06 05:49:25 +03:00
695a8035b5 Adds engine traits for projectile prediction
Implements engine-specific traits for projectile and target position prediction.
Each trait encapsulates logic tailored to a specific game engine (IW, OpenGL, Unity),
accounting for engine-specific coordinate systems and calculations.
This allows for accurate projectile prediction across different game environments.
2025-08-06 05:45:37 +03:00
d12b236e56 Refactors target position prediction
Moves target prediction logic into engine traits, improving modularity.

This change consolidates target position prediction within the engine traits,
allowing for a more flexible and maintainable design.

This eliminates redundant code and simplifies the core prediction engine by
delegating target movement calculations to the appropriate trait.
2025-08-04 03:16:04 +03:00
7a5090d9f6 Marks legacy engine class as final
Prevents further inheritance from the legacy projectile prediction engine class.
2025-08-04 01:12:22 +03:00
ec76a7239c Adds direct pitch angle calculation
Implements a direct pitch angle calculation for scenarios with zero gravity, ensuring accurate projectile trajectory predictions in such conditions.

Also marks several methods as noexcept for better performance and exception safety.
2025-08-04 01:11:11 +03:00
2758f549a3 Updates project version and removes legacy code
Updates the project version to prepare for a new release.

Removes the legacy projectile prediction engine, which is no longer needed.
2025-08-03 18:35:52 +03:00
493931ef0f Ignores vcpkg directory
Excludes the vcpkg directory from being tracked by Git.

This prevents accidental commits of external library files
managed by vcpkg, keeping the repository cleaner.
2025-08-03 18:31:02 +03:00
9e1990942b Refactors projectile prediction engine
Migrates projectile prediction logic to leverage engine traits for improved flexibility and testability.

This change decouples core prediction algorithms from specific engine implementations, allowing for easier adaptation to different game engines or simulation environments.
2025-08-03 18:28:47 +03:00
f1984fbe46 Merge pull request #51 from orange-cpp/feature/projectile_pred_custom
Refactors projectile prediction engine
2025-08-03 17:38:08 +03:00
f1fbea21a7 Refactors projectile prediction engine
Refactors the projectile prediction engine by introducing an interface
and making the legacy implementation more flexible.

The legacy engine is updated to allow for coordinate system customization
through virtual methods, enabling usage in different game environments.

Also introduces vcpkg support for easier dependency management and adds boost-asio as a dependency.
2025-08-03 17:33:22 +03:00
4b44ce0667 Documents projectile launch angle formula
Adds a comment documenting the formula used for calculating the projectile launch pitch angle.

The comment includes a link to the Stack Overflow discussion where the formula was found and the LaTeX representation of the formula for clarity.
2025-07-31 21:52:16 +03:00
231ef35a0a Merge pull request #49 from orange-cpp/feature/legacy_option
Adds option to enable legacy classes
2025-07-15 11:52:36 +03:00
1aa62cb396 Enables legacy code compilation
The changes encapsulate the matrix tests within an `#ifdef` block, allowing conditional compilation based on whether `OMATH_ENABLE_LEGACY` is defined. This enables the legacy code to be compiled only when needed.
2025-07-15 11:51:14 +03:00
8e411771c2 Adds option to enable legacy classes
Introduces a CMake option to enable legacy classes,
allowing for backward compatibility with older code.
This ensures that older codebases can still function
while new development can utilize updated classes.
2025-07-15 11:48:33 +03:00
d65852d1a4 Update README.md 2025-07-14 23:11:46 +03:00
21f5e82a20 Merge pull request #48 from luadebug/patch-1
Update INSTALL.md
2025-07-14 23:10:39 +03:00
Saikari
851ec37350 Update INSTALL.md 2025-07-14 18:53:41 +03:00
f1cd9dbeb3 Update README.md
fixed ordering
2025-07-14 17:39:16 +03:00
7a1c7d6cc4 Update README.md
made badge in read me smaller
2025-07-14 17:38:50 +03:00
cb704b3621 Merge pull request #47 from luadebug/patch-1
Update README.md

Thx for vcpkg port update <3 u r already in CREDITS.md
2025-07-14 17:37:12 +03:00
Saikari
646d295876 Update README.md 2025-07-14 16:25:16 +03:00
8e09556c25 Update README.md 2025-07-08 17:14:52 +03:00
7dbebc996d Update README.md 2025-07-08 17:13:24 +03:00
278ffba0ff Update README.md 2025-07-08 17:01:56 +03:00
647cf02a38 Renames test fixture for clarity.
Updates the name of the test fixture from "lline_tracer_fixture" to "line_tracer_fixture" for improved readability and consistency in the test code.
2025-07-07 08:28:29 +03:00
4be2986681 Fixes potential compile error
Corrects the usage of `At` method within the unit tests to `at` to resolve a potential compile error due to incorrect case sensitivity.
2025-07-07 08:18:00 +03:00
06d9b4c910 fixed naming in tests 2025-07-07 08:02:35 +03:00
a074fdcb92 Merge pull request #45 from luadebug/patch-1
Check for ImGUI dependency in omathConfig.cmake.in
2025-07-07 05:30:19 +03:00
Saikari
8241d9c355 Update omathConfig.cmake.in 2025-07-07 04:53:56 +03:00
66258f0f6d Updates CMake export target and namespace.
Updates the CMake export target and namespace to use the project name,
improving consistency and avoiding naming conflicts.

Adds a simple diagram to the triangle header file.
2025-07-06 11:14:46 +03:00
65541fa2c7 Renames library target to project name
Updates the CMakeLists.txt to use the project name as the library target name instead of hardcoding "omath".

This change ensures consistency and avoids potential conflicts when integrating the library into other projects.
It also aligns the target naming with CMake best practices.
2025-07-06 11:07:15 +03:00
7e4a6134bf added new method 2025-06-23 06:14:17 +03:00
a54a537239 fix 2025-06-17 21:34:25 +03:00
f01bbde537 added banner to repo 2025-06-17 21:33:39 +03:00
2c710555d6 fixed example 2025-06-16 01:40:14 +03:00
9c2be6306c Merge pull request #39 from orange-cpp/u/orange-cpp/writerside
U/orange cpp/writerside
2025-05-21 16:58:19 +03:00
d37840d4ef fixed stuff 2025-05-21 16:57:17 +03:00
b4a3b5d529 added text 2025-05-21 16:47:15 +03:00
c2a772142c fix 2025-05-21 16:47:15 +03:00
76fca7f527 fix 2025-05-21 16:47:15 +03:00
73ccd24e3e improved intro 2025-05-21 16:47:15 +03:00
a642feafb5 added new topic 2025-05-21 16:47:15 +03:00
faf9f34af8 stipped away text 2025-05-21 16:47:15 +03:00
b56801ac91 added files 2025-05-21 16:47:15 +03:00
a81d12d480 fixed version 2025-05-13 09:48:46 +03:00
17eb0cd0dc improved naming 2025-05-13 09:47:08 +03:00
52024285d2 added noexcept 2025-05-13 09:34:39 +03:00
f179aea4d7 removed even float type from vector classes 2025-05-13 09:22:23 +03:00
1196bb86b4 Merge pull request #44 from orange-cpp/feature/noexcept
Feature/noexcept
2025-05-05 02:34:43 +03:00
5489c296e9 added more noexcept 2025-05-05 02:24:23 +03:00
50ddf2d31e added more noexcept 2025-05-05 01:46:50 +03:00
a6e4c0461d added noexcept 2025-05-05 01:16:12 +03:00
6749f9f759 added noexcept for color and angles 2025-05-04 19:16:49 +03:00
9a38d47b0d added noexcept for vector types 2025-05-04 19:13:26 +03:00
f6f8bba032 changed license to zlib 2025-05-04 19:05:10 +03:00
ce08fcdd29 removed useless source files 2025-05-04 19:03:18 +03:00
49ea113348 fixed style 2025-05-04 18:54:33 +03:00
af21f9a946 removed pow 2025-05-04 18:07:35 +03:00
f096f7179f fixed clang format 2025-05-04 17:42:32 +03:00
e025e99d18 Update README.md 2025-05-04 00:55:35 +03:00
30eef59360 Update cmake-multi-platform.yml
switched to clang

Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
Update cmake-multi-platform.yml
added runtime dir

fix
2025-05-03 22:51:46 +03:00
c2a6cf5c47 Merge pull request #43 from orange-cpp/orange-cpp-ci
Create cmake-multi-platform.yml
2025-05-03 22:04:37 +03:00
7f55383bc1 Create cmake-multi-platform.yml 2025-05-03 22:04:10 +03:00
449c60133c bugfix 2025-05-03 21:36:16 +03:00
31d3359507 Merge pull request #42 from orange-cpp/feature/new-codestyle
Feature/new codestyle
2025-05-03 20:59:06 +03:00
dd738f365d fix 2025-05-03 20:51:50 +03:00
b5e788385d fixed style 2025-05-03 20:38:58 +03:00
df6d75e554 changed code style 2025-05-03 20:31:59 +03:00
be3fae63b8 patched clang format 2025-05-03 16:50:29 +03:00
dd731b60c3 updated clang format 2025-05-03 16:39:38 +03:00
b06fd00673 Merge pull request #41 from orange-cpp/u/improved-cmake
improved cmake, removed useless cmake files
2025-04-30 21:31:34 +03:00
998c8f3a43 improved cmake, removed useless cmake files 2025-04-30 21:26:25 +03:00
faeef594b9 moved installation stuff to INSTALL.md 2025-04-30 18:15:46 +03:00
40a301186e Merge pull request #40 from orange-cpp/u/orange/inverted-matrix
U/orange/inverted matrix
2025-04-29 20:53:02 +03:00
a41526c494 style fix 2025-04-29 20:52:41 +03:00
a0d1dc4313 added test case 2025-04-29 20:49:59 +03:00
1c5c9360c8 added inverse method 2025-04-29 20:33:39 +03:00
4615769682 added additional methods 2025-04-29 20:10:17 +03:00
4ef674f7b4 fixed infinite recursion in compile time 2025-04-29 20:08:27 +03:00
69b9049fb0 fixed gimba lock for unity 2025-04-26 00:52:46 +03:00
2734b58bdd fixed gimba lock for opengl camera 2025-04-26 00:32:53 +03:00
d7f1f49165 resetting state 2025-04-25 23:52:10 +03:00
94b1453cae removed .idea folder 2025-04-23 02:48:45 +03:00
3e67d8a99c added credits 2025-04-23 02:46:08 +03:00
8c00ab3d9d Merge pull request #38 from orange-cpp/u/orange-cpp/3d-primitives
U/orange cpp/3d primitives
2025-04-18 17:00:38 +03:00
d14cb1e93e reset to default 2025-04-18 16:55:07 +03:00
c692cf39e1 updated readme 2025-04-18 16:53:53 +03:00
9c934c5d9c improved tests 2025-04-18 16:36:22 +03:00
Vladislav Alpatov
f8202b116d improved line tracer 2025-04-18 16:00:23 +03:00
8bf0bb8e0d improved line trace and box primitive 2025-04-18 13:56:08 +03:00
a340766348 switched to polygons 2025-04-18 12:34:24 +03:00
254674a62e fixed code style 2025-04-18 12:11:43 +03:00
97c2da893b added ratio param 2025-04-18 01:33:47 +03:00
0ce30a7038 added new build option 2025-04-18 00:51:07 +03:00
492ddfd566 added box 2025-04-18 00:43:46 +03:00
118 changed files with 2710 additions and 1866 deletions

View File

@@ -1,62 +1,64 @@
# Generated from CLion C/C++ Code Style settings
---
Language: Cpp
# Generated by CLion for Stroustrup
# The Stroustrup style, named after Bjarne Stroustrup, the creator of C++, is similar to the K&R style but differs
# in its treatment of the class definitions and the placement of braces in certain contexts. The opening brace is
# placed on the same line as the control statement, and the closing brace is on its own line.
BasedOnStyle: LLVM
AccessModifierOffset: -4
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignOperands: true
AlignConsecutiveAssignments: None
AlignConsecutiveBitFields: None
AlignConsecutiveDeclarations: None
AlignConsecutiveMacros: AcrossEmptyLinesAndComments
AlignTrailingComments: false
AllowShortBlocksOnASingleLine: false
AllowShortBlocksOnASingleLine: Never
AllowShortFunctionsOnASingleLine: None
AlwaysBreakTemplateDeclarations: Yes
BraceWrapping:
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
BreakTemplateDeclarations: Leave
BreakBeforeBraces: Custom
BraceWrapping:
AfterCaseLabel: true
AfterClass: true
AfterControlStatement: true
AfterEnum: true
AfterFunction: true
AfterControlStatement: true
SplitEmptyFunction: true
AfterEnum: true
AfterNamespace: true
AfterStruct: true
AfterUnion: true
AfterExternBlock: true
BeforeCatch: false
BeforeElse: false
BeforeCatch: true
BeforeElse: true
BeforeLambdaBody: true
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: true
BeforeWhile: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBraces: Custom
BreakConstructorInitializers: AfterColon
BreakConstructorInitializersBeforeComma: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeConceptDeclarations: false
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ContinuationIndentWidth: 8
IncludeCategories:
- Regex: '^<.*'
Priority: 1
- Regex: '^".*'
Priority: 2
- Regex: '.*'
Priority: 3
IncludeIsMainRegex: '([-_](test|unittest))?$'
IndentCaseLabels: true
IncludeBlocks: Merge
IndentExternBlock: Indent
IndentRequiresClause: false
IndentWidth: 4
InsertNewlineAtEOF: true
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 2
ContinuationIndentWidth: 8
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: true
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpaceBeforeCtorInitializerColon: false
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
AfterControlStatements: true
AfterFunctionDeclarationName: false
AfterFunctionDefinitionName: false
AfterForeachMacros: true
AfterIfMacros: true
AfterOverloadedOperator: false
BeforeNonEmptyParentheses: false
SpaceBeforeRangeBasedForLoopColon: false
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
TabWidth: 4
...
SpacesInConditionalStatement: false
SpacesInContainerLiterals: false
SpacesInParentheses: false

BIN
.github/images/banner.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

View File

@@ -0,0 +1,79 @@
name: Omath CI (Arch Linux / Windows)
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
concurrency:
group: ci-${{ github.ref }}
cancel-in-progress: true
##############################################################################
# 1) ARCH LINUX Clang / Ninja
##############################################################################
jobs:
arch-build-and-test:
name: Arch Linux (Clang)
runs-on: ubuntu-latest
container: archlinux:latest
steps:
- name: Install basic tool-chain with pacman
shell: bash
run: |
pacman -Sy --noconfirm archlinux-keyring
pacman -Syu --noconfirm --needed \
git base-devel clang cmake ninja
- name: Checkout repository (with sub-modules)
uses: actions/checkout@v4
with:
submodules: recursive
- name: Configure (cmake --preset)
shell: bash
run: cmake --preset linux-release -DOMATH_BUILD_TESTS=ON
- name: Build
shell: bash
run: cmake --build cmake-build/build/linux-release --target all
- name: Run unit_tests
shell: bash
run: ./out/Release/unit_tests
##############################################################################
# 2) Windows MSVC / Ninja
##############################################################################
windows-build-and-test:
name: Windows (MSVC)
runs-on: windows-latest
steps:
- name: Checkout repository (with sub-modules)
uses: actions/checkout@v4
with:
submodules: recursive
- name: Install Ninja
uses: seanmiddleditch/gha-setup-ninja@v4
- name: Set up MSVC developer command-prompt
uses: ilammy/msvc-dev-cmd@v1
- name: Configure (cmake --preset)
shell: bash
run: cmake --preset windows-release -DOMATH_BUILD_TESTS=ON
- name: Build
shell: bash
run: cmake --build cmake-build/build/windows-release --target all
- name: Run unit_tests.exe
shell: bash
run: ./out/Release/unit_tests.exe

3
.gitignore vendored
View File

@@ -1,4 +1,5 @@
/cmake-build/
/.idea
/out
*.DS_Store
*.DS_Store
/extlibs/vcpkg

8
.idea/modules.xml generated
View File

@@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/uml.iml" filepath="$PROJECT_DIR$/.idea/uml.iml" />
</modules>
</component>
</project>

2
.idea/uml.iml generated
View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module classpath="CMake" type="CPP_MODULE" version="4" />

7
.idea/vcs.xml generated
View File

@@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
<mapping directory="$PROJECT_DIR$/extlibs/googletest" vcs="Git" />
</component>
</project>

View File

@@ -1,96 +1,108 @@
cmake_minimum_required(VERSION 3.26)
project(omath VERSION 1.0.1 LANGUAGES CXX)
project(omath VERSION 3.0.4.1 LANGUAGES CXX)
include(CMakePackageConfigHelpers)
option(OMATH_BUILD_TESTS "Build unit tests" OFF)
option(OMATH_BUILD_TESTS "Build unit tests" ${PROJECT_IS_TOP_LEVEL})
option(OMATH_THREAT_WARNING_AS_ERROR "Set highest level of warnings and force compiler to treat them as errors" ON)
option(OMATH_BUILD_AS_SHARED_LIBRARY "Build Omath as .so or .dll" OFF)
option(OMATH_USE_AVX2 "Omath will use AVX2 to boost performance" ON)
option(OMATH_IMGUI_INTEGRATION "Omath will define method to convert omath types to imgui types" OFF)
option(OMATH_BUILD_EXAMPLES "Build example projects with you can learn & play" OFF)
option(OMATH_STATIC_MSVC_RUNTIME_LIBRARY "Force Omath to link static runtime" OFF)
option(OMATH_STATIC_MSVC_RUNTIME_LIBRARY "Force Omath to link static runtime" OFF)
option(OMATH_SUPRESS_SAFETY_CHECKS "Supress some safety checks in release build to improve general performance" ON)
option(OMATH_USE_UNITY_BUILD "Will enable unity build to speed up compilation" ON)
option(OMATH_ENABLE_LEGACY "Will enable legacy classes that MUST be used ONLY for backward compatibility" OFF)
file(GLOB_RECURSE OMATH_SOURCES CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/source/*.cpp")
file(GLOB_RECURSE OMATH_HEADERS CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/include/*.hpp")
if (OMATH_BUILD_AS_SHARED_LIBRARY)
add_library(omath SHARED source/matrix.cpp)
else()
add_library(omath STATIC source/matrix.cpp
source/matrix.cpp)
endif()
add_library(${PROJECT_NAME} SHARED ${OMATH_SOURCES} ${OMATH_HEADERS})
else ()
add_library(${PROJECT_NAME} STATIC ${OMATH_SOURCES} ${OMATH_HEADERS})
endif ()
message(STATUS "Building on ${CMAKE_HOST_SYSTEM_NAME}")
add_library(omath::omath ALIAS omath)
message(STATUS "[OMATH]: Building on ${CMAKE_HOST_SYSTEM_NAME}")
add_library(${PROJECT_NAME}::${PROJECT_NAME} ALIAS ${PROJECT_NAME})
if (OMATH_IMGUI_INTEGRATION)
target_compile_definitions(omath PUBLIC OMATH_IMGUI_INTEGRATION)
target_compile_definitions(${PROJECT_NAME} PUBLIC OMATH_IMGUI_INTEGRATION)
# IMGUI is being linked as submodule
if(TARGET imgui)
target_link_libraries(omath PUBLIC imgui)
if (TARGET imgui)
target_link_libraries(${PROJECT_NAME} PUBLIC imgui)
install(TARGETS imgui
EXPORT omathTargets
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
else()
else ()
# Assume that IMGUI linked via VCPKG.
find_package(imgui CONFIG REQUIRED)
target_link_libraries(omath PUBLIC imgui::imgui)
endif()
target_link_libraries(${PROJECT_NAME} PUBLIC imgui::imgui)
endif ()
endif()
endif ()
if (OMATH_USE_AVX2)
target_compile_definitions(omath PUBLIC OMATH_USE_AVX2)
endif()
target_compile_definitions(${PROJECT_NAME} PUBLIC OMATH_USE_AVX2)
endif ()
if (OMATH_SUPRESS_SAFETY_CHECKS)
target_compile_definitions(omath PUBLIC OMATH_SUPRESS_SAFETY_CHECKS)
endif()
target_compile_definitions(${PROJECT_NAME} PUBLIC OMATH_SUPRESS_SAFETY_CHECKS)
endif ()
set_target_properties(omath PROPERTIES
if (OMATH_ENABLE_LEGACY)
target_compile_options(${PROJECT_NAME} PUBLIC OMATH_ENABLE_LEGACY)
endif ()
set_target_properties(${PROJECT_NAME} PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 20
CXX_STANDARD 23
CXX_STANDARD_REQUIRED ON)
if (OMATH_USE_UNITY_BUILD)
set_target_properties(${PROJECT_NAME} PROPERTIES
UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 20)
endif ()
if (OMATH_STATIC_MSVC_RUNTIME_LIBRARY)
set_target_properties(omath PROPERTIES
set_target_properties(${PROJECT_NAME} PROPERTIES
MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>"
)
endif()
endif ()
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
target_compile_options(omath PRIVATE -mavx2 -mfma)
endif()
target_compile_options(${PROJECT_NAME} PRIVATE -mavx2 -mfma)
endif ()
target_compile_features(omath PUBLIC cxx_std_23)
target_compile_features(${PROJECT_NAME} PUBLIC cxx_std_23)
add_subdirectory(source)
if(OMATH_BUILD_TESTS)
if (OMATH_BUILD_TESTS)
add_subdirectory(extlibs)
add_subdirectory(tests)
endif()
endif ()
if (OMATH_BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
endif ()
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC" AND OMATH_THREAT_WARNING_AS_ERROR)
target_compile_options(omath PRIVATE /W4 /WX)
elseif(OMATH_THREAT_WARNING_AS_ERROR)
target_compile_options(omath PRIVATE -Wall -Wextra -Wpedantic -Werror)
endif()
target_compile_options(${PROJECT_NAME} PRIVATE /W4 /WX)
elseif (OMATH_THREAT_WARNING_AS_ERROR)
target_compile_options(${PROJECT_NAME} PRIVATE -Wall -Wextra -Wpedantic -Werror)
endif ()
target_include_directories(omath
target_include_directories(${PROJECT_NAME}
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> # Use this path when building the project
$<INSTALL_INTERFACE:include> # Use this path when the project is installed
@@ -100,21 +112,21 @@ target_include_directories(omath
# Installation rules
# Install the library
install(TARGETS omath
EXPORT omathTargets
ARCHIVE DESTINATION lib COMPONENT omath # For static libraries
LIBRARY DESTINATION lib COMPONENT omath # For shared libraries
RUNTIME DESTINATION bin COMPONENT omath # For executables (on Windows)
install(TARGETS ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}Targets
ARCHIVE DESTINATION lib COMPONENT ${PROJECT_NAME} # For static libraries
LIBRARY DESTINATION lib COMPONENT ${PROJECT_NAME} # For shared libraries
RUNTIME DESTINATION bin COMPONENT ${PROJECT_NAME} # For executables (on Windows)
)
# Install headers as part of omath_component
install(DIRECTORY include/ DESTINATION include COMPONENT omath)
install(DIRECTORY include/ DESTINATION include COMPONENT ${PROJECT_NAME})
# Export omath target for CMake find_package support, also under omath_component
install(EXPORT omathTargets
FILE omathTargets.cmake
NAMESPACE omath::
DESTINATION lib/cmake/omath COMPONENT omath
install(EXPORT ${PROJECT_NAME}Targets
FILE ${PROJECT_NAME}Targets.cmake
NAMESPACE ${PROJECT_NAME}::
DESTINATION lib/cmake/${PROJECT_NAME} COMPONENT ${PROJECT_NAME}
)
@@ -129,12 +141,12 @@ write_basic_package_version_file(
configure_package_config_file(
"${CMAKE_CURRENT_SOURCE_DIR}/cmake/omathConfig.cmake.in" # Path to the .in file
"${CMAKE_CURRENT_BINARY_DIR}/omathConfig.cmake" # Output path for the generated file
INSTALL_DESTINATION lib/cmake/omath
INSTALL_DESTINATION lib/cmake/${PROJECT_NAME}
)
# Install the generated config files
install(FILES
"${CMAKE_CURRENT_BINARY_DIR}/omathConfig.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/omathConfigVersion.cmake"
DESTINATION lib/cmake/omath
DESTINATION lib/cmake/${PROJECT_NAME}
)

View File

@@ -40,8 +40,8 @@
"binaryDir": "${sourceDir}/cmake-build/build/${presetName}",
"installDir": "${sourceDir}/cmake-build/install/${presetName}",
"cacheVariables": {
"CMAKE_C_COMPILER": "gcc",
"CMAKE_CXX_COMPILER": "g++"
"CMAKE_C_COMPILER": "clang",
"CMAKE_CXX_COMPILER": "clang++"
},
"condition": {
"type": "equals",

32
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,32 @@
## 🤝 Contributing to OMath or other Orange's Projects
### ❕ Prerequisites
- A working up-to-date OMath installation
- C++ knowledge
- Git knowledge
- Ability to ask for help (Feel free to create empty pull-request or PM a maintainer
in [Telegram](https://t.me/orange_cpp))
### ⏬ Setting up OMath
Please read INSTALL.md file in repository
### 🔀 Pull requests and Branches
In order to send code back to the official OMath repository, you must first create a copy of OMath on your github
account ([fork](https://help.github.com/articles/creating-a-pull-request-from-a-fork/)) and
then [create a pull request](https://help.github.com/articles/creating-a-pull-request-from-a-fork/) back to OMath.
OMath developement is performed on multiple branches. Changes are then pull requested into master. By default, changes
merged into master will not roll out to stable build users unless the `stable` tag is updated.
### 📜 Code-Style
The orange code-style can be found in `.clang-format`.
### 📦 Building
OMath has already created the `cmake-build` and `out` directories where cmake/bin files are located. By default, you
can build OMath by running `cmake --build cmake-build/build/windows-release --target omath -j 6` in the source
directory.

11
CREDITS.md Normal file
View File

@@ -0,0 +1,11 @@
# OMATH CREDITS
Thanks to everyone who made this possible, including:
- Saikari aka luadebug for VCPKG port.
And a big hand to everyone else who has contributed over the past!
THANKS! <3
-- Orange++ <orange-cpp@yandex.ru>

68
INSTALL.md Normal file
View File

@@ -0,0 +1,68 @@
# 📥Installation Guide
## <img width="28px" src="https://vcpkg.io/assets/mark/mark.svg" /> Using vcpkg
**Note**: Support vcpkg for package management
1. Install [vcpkg](https://github.com/microsoft/vcpkg)
2. Run the following command to install the orange-math package:
```
vcpkg install orange-math
```
CMakeLists.txt
```cmake
find_package(omath CONFIG REQUIRED)
target_link_libraries(main PRIVATE omath::omath)
```
For detailed commands on installing different versions and more information, please refer to Microsoft's [official instructions](https://learn.microsoft.com/en-us/vcpkg/get_started/overview).
## <img width="28px" src="https://xmake.io/assets/img/logo.svg" /> Using xrepo
**Note**: Support xrepo for package management
1. Install [xmake](https://xmake.io/)
2. Run the following command to install the omath package:
```
xrepo install omath
```
xmake.lua
```xmake
add_requires("omath")
target("...")
add_packages("omath")
```
## <img width="28px" src="https://upload.wikimedia.org/wikipedia/commons/e/ef/CMake_logo.svg?" /> Build from source using CMake
1. **Preparation**
Install needed tools: cmake, clang, git, msvc (windows only).
1. **Linux:**
```bash
sudo pacman -Sy cmake ninja clang git
```
2. **MacOS:**
```bash
brew install llvm git cmake ninja
```
3. **Windows:**
Install Visual Studio from [here](https://visualstudio.microsoft.com/downloads/) and Git from [here](https://git-scm.com/downloads).
Use x64 Native Tools shell to execute needed commands down below.
2. **Clone the repository:**
```bash
git clone https://github.com/orange-cpp/omath.git
```
3. **Navigate to the project directory:**
```bash
cd omath
```
4. **Build the project using CMake:**
```bash
cmake --preset windows-release -S .
cmake --build cmake-build/build/windows-release --target omath -j 6
```
Use **\<platform\>-\<build configuration\>** preset to build siutable version for yourself. Like **windows-release** or **linux-release**.
| Platform Name | Build Config |
|---------------|---------------|
| windows | release/debug |
| linux | release/debug |
| darwin | release/debug |

20
LICENSE
View File

@@ -1,9 +1,17 @@
The MIT License (MIT)
Copyright (C) 2024-2025 Orange++ <orange-cpp@yandex.ru>
Copyright (c) 2024 Orange++
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

View File

@@ -1,16 +1,28 @@
<div align = center>
![banner](https://i.imgur.com/SM9ccP6.png)
![banner](https://github.com/orange-cpp/omath/blob/main/.github/images/banner.png?raw=true)
![GitHub License](https://img.shields.io/github/license/orange-cpp/omath)
![GitHub contributors](https://img.shields.io/github/contributors/orange-cpp/omath)
![GitHub top language](https://img.shields.io/github/languages/top/orange-cpp/omath)
[![CodeFactor](https://www.codefactor.io/repository/github/orange-cpp/omath/badge)](https://www.codefactor.io/repository/github/orange-cpp/omath)
![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/orange-cpp/omath/cmake-multi-platform.yml)
[![Vcpkg package](https://repology.org/badge/version-for-repo/vcpkg/orange-math.svg)](https://repology.org/project/orange-math/versions)
![GitHub forks](https://img.shields.io/github/forks/orange-cpp/omath)
</div>
Oranges's Math Library (omath) is a comprehensive, open-source library aimed at providing efficient, reliable, and versatile mathematical functions and algorithms. Developed primarily in C++, this library is designed to cater to a wide range of mathematical operations essential in scientific computing, engineering, and academic research.
<div align = center>
<a href="https://www.star-history.com/#orange-cpp/omath&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=orange-cpp/omath&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=orange-cpp/omath&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=orange-cpp/omath&type=Date" />
</picture>
</a>
</div>
## 👁‍🗨 Features
- **Efficiency**: Optimized for performance, ensuring quick computations using AVX2.
- **Versatility**: Includes a wide array of mathematical functions and algorithms.
@@ -37,40 +49,9 @@ Oranges's Math Library (omath) is a comprehensive, open-source library aimed at
| Linux | ✅YES |
| Darwin (MacOS) | ✅YES |
## ⏬ Getting Started
### Prerequisites
- C++ Compiler
- CMake (for building the project)
## ⏬ Installation
Please read our [installation guide](https://github.com/orange-cpp/omath/blob/main/INSTALL.md). If this link doesn't work check out INSTALL.md file.
### Installation
### vcpkg
**Note**: Support vcpkg for package management
1. Install vcpkg (https://github.com/microsoft/vcpkg)
2. Run the following command to install the orange-math package:
```
vcpkg install orange-math
```
CMakeLists.txt
```cmake
find_package(omath CONFIG REQUIRED)
target_link_libraries(main PRIVATE omath::omath)
```
For detailed commands on installing different versions and more information, please refer to Microsoft's official instructions (https://learn.microsoft.com/en-us/vcpkg/get_started/overview)
### Build from source
1. Clone the repository:
```
git clone https://github.com/orange-cpp/omath.git
```
2. Navigate to the project directory:
```
cd omath
```
3. Build the project using CMake:
```
cmake --preset windows-release -S .
cmake --build cmake-build/build/windows-release --target omath -j 6
```
Use **\<platform\>-\<build configuration\>** preset to build siutable version for yourself. Like **windows-release** or **linux-release**.
## ❔ Usage
Simple world to screen function
```c++
@@ -91,7 +72,8 @@ With `omath/projection` module you can achieve simple ESP hack for powered by So
![banner](https://i.imgur.com/lcJrfcZ.png)
Or for InfinityWard Engine based games. Like Call of Duty Black Ops 2!
![banner](https://i.imgur.com/F8dmdoo.png)
Or create simple trigger bot with embeded traceline from omath::collision::LineTrace
![banner](https://i.imgur.com/fxMjRKo.jpeg)
Or even advanced projectile aimbot
[Watch Video](https://youtu.be/lM_NJ1yCunw?si=5E87OrQMeypxSJ3E)
</details>
@@ -100,7 +82,7 @@ Or even advanced projectile aimbot
Contributions to `omath` are welcome! Please read `CONTRIBUTING.md` for details on our code of conduct and the process for submitting pull requests.
## 📜 License
This project is licensed under the MIT - see the `LICENSE` file for details.
This project is licensed under the ZLIB - see the `LICENSE` file for details.
## 💘 Acknowledgments
- [All contributors](https://github.com/orange-cpp/omath/graphs/contributors)

View File

@@ -2,6 +2,10 @@
include(CMakeFindDependencyMacro)
if (@OMATH_IMGUI_INTEGRATION@)
find_dependency(imgui CONFIG)
endif()
# Load the targets for the omath library
include("${CMAKE_CURRENT_LIST_DIR}/omathTargets.cmake")
check_required_components(omath)

View File

@@ -15,8 +15,8 @@ int main()
float fov = 0;
float near = 0;
float far = 0;
float viewPortWidth = 0;
float viewPortHeight = 0;
float view_port_width = 0;
float view_port_height = 0;
std::print("Enter camera fov: ");
std::cin >> fov;
@@ -28,13 +28,13 @@ int main()
std::cin >> far;
std::print("Enter camera screen width: ");
std::cin >> viewPortWidth;
std::cin >> view_port_width;
std::print("Enter camera screen height: ");
std::cin >> viewPortHeight;
std::cin >> view_port_height;
const auto mat =
omath::opengl_engine::CalcPerspectiveProjectionMatrix(fov, viewPortWidth / viewPortHeight, near, far);
omath::opengl_engine::calc_perspective_projection_matrix(fov, view_port_width / view_port_height, near, far);
std::print("{}", mat.ToString());
std::print("{}", mat.to_string());
};

View File

@@ -0,0 +1,17 @@
//
// Created by Vlad on 4/18/2025.
//
#pragma once
#include <array>
#include "omath/triangle.hpp"
#include "omath/vector3.hpp"
namespace omath::primitives
{
[[nodiscard]]
std::array<Triangle<Vector3<float>>, 12> create_box(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dir_forward, const Vector3<float>& dir_right,
float ratio = 4.f) noexcept;
}

View File

@@ -3,10 +3,9 @@
//
#pragma once
#include "omath/angles.hpp"
#include <algorithm>
#include <utility>
#include "omath/angles.hpp"
namespace omath
{
@@ -17,14 +16,14 @@ namespace omath
};
template<class Type = float, Type min = Type(0), Type max = Type(360), AngleFlags flags = AngleFlags::Normalized>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Angle
{
Type m_angle;
constexpr explicit Angle(const Type& degrees)
constexpr explicit Angle(const Type& degrees) noexcept
{
if constexpr (flags == AngleFlags::Normalized)
m_angle = angles::WrapAngle(degrees, min, max);
m_angle = angles::wrap_angle(degrees, min, max);
else if constexpr (flags == AngleFlags::Clamped)
m_angle = std::clamp(degrees, min, max);
@@ -37,71 +36,71 @@ namespace omath
public:
[[nodiscard]]
constexpr static Angle FromDegrees(const Type& degrees)
constexpr static Angle from_degrees(const Type& degrees) noexcept
{
return Angle{degrees};
}
constexpr Angle() : m_angle(0)
constexpr Angle() noexcept: m_angle(0)
{
}
[[nodiscard]]
constexpr static Angle FromRadians(const Type& degrees)
constexpr static Angle from_radians(const Type& degrees) noexcept
{
return Angle{angles::RadiansToDegrees<Type>(degrees)};
return Angle{angles::radians_to_degrees<Type>(degrees)};
}
[[nodiscard]]
constexpr const Type& operator*() const
constexpr const Type& operator*() const noexcept
{
return m_angle;
}
[[nodiscard]]
constexpr Type AsDegrees() const
constexpr Type as_degrees() const noexcept
{
return m_angle;
}
[[nodiscard]]
constexpr Type AsRadians() const
constexpr Type as_radians() const noexcept
{
return angles::DegreesToRadians(m_angle);
return angles::degrees_to_radians(m_angle);
}
[[nodiscard]]
Type Sin() const
Type sin() const noexcept
{
return std::sin(AsRadians());
return std::sin(as_radians());
}
[[nodiscard]]
Type Cos() const
Type cos() const noexcept
{
return std::cos(AsRadians());
return std::cos(as_radians());
}
[[nodiscard]]
Type Tan() const
Type tan() const noexcept
{
return std::tan(AsRadians());
return std::tan(as_radians());
}
[[nodiscard]]
Type Atan() const
Type atan() const noexcept
{
return std::atan(AsRadians());
return std::atan(as_radians());
}
[[nodiscard]]
Type Cot() const
Type cot() const noexcept
{
return Cos() / Sin();
return cos() / sin();
}
constexpr Angle& operator+=(const Angle& other)
constexpr Angle& operator+=(const Angle& other) noexcept
{
if constexpr (flags == AngleFlags::Normalized)
m_angle = angles::WrapAngle(m_angle + other.m_angle, min, max);
m_angle = angles::wrap_angle(m_angle + other.m_angle, min, max);
else if constexpr (flags == AngleFlags::Clamped)
m_angle = std::clamp(m_angle + other.m_angle, min, max);
@@ -115,18 +114,18 @@ namespace omath
}
[[nodiscard]]
constexpr std::partial_ordering operator<=>(const Angle& other) const = default;
constexpr std::partial_ordering operator<=>(const Angle& other) const noexcept = default;
constexpr Angle& operator-=(const Angle& other)
constexpr Angle& operator-=(const Angle& other) noexcept
{
return operator+=(-other);
}
[[nodiscard]]
constexpr Angle& operator+(const Angle& other)
constexpr Angle& operator+(const Angle& other) noexcept
{
if constexpr (flags == AngleFlags::Normalized)
return {angles::WrapAngle(m_angle + other.m_angle, min, max)};
return {angles::wrap_angle(m_angle + other.m_angle, min, max)};
else if constexpr (flags == AngleFlags::Clamped)
return {std::clamp(m_angle + other.m_angle, min, max)};
@@ -138,13 +137,13 @@ namespace omath
}
[[nodiscard]]
constexpr Angle& operator-(const Angle& other)
constexpr Angle& operator-(const Angle& other) noexcept
{
return operator+(-other);
}
[[nodiscard]]
constexpr Angle operator-() const
constexpr Angle operator-() const noexcept
{
return Angle{-m_angle};
}

View File

@@ -10,54 +10,55 @@ namespace omath::angles
{
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] constexpr Type RadiansToDegrees(const Type& radians)
[[nodiscard]] constexpr Type radians_to_degrees(const Type& radians) noexcept
{
return radians * (Type(180) / std::numbers::pi_v<Type>);
return radians * (static_cast<Type>(180) / std::numbers::pi_v<Type>);
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] constexpr Type DegreesToRadians(const Type& degrees)
[[nodiscard]] constexpr Type degrees_to_radians(const Type& degrees) noexcept
{
return degrees * (std::numbers::pi_v<Type> / Type(180));
}
template<class type>
requires std::is_floating_point_v<type>
[[nodiscard]] type HorizontalFovToVertical(const type& horFov, const type& aspect)
{
const auto fovRad = DegreesToRadians(horFov);
const auto vertFov = type(2) * std::atan(std::tan(fovRad / type(2)) / aspect);
return RadiansToDegrees(vertFov);
return degrees * (std::numbers::pi_v<Type> / static_cast<Type>(180));
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] Type VerticalFovToHorizontal(const Type& vertFov, const Type& aspect)
[[nodiscard]] Type horizontal_fov_to_vertical(const Type& horizontal_fov, const Type& aspect) noexcept
{
const auto fovRad = DegreesToRadians(vertFov);
const auto fov_rad = degrees_to_radians(horizontal_fov);
const auto horFov = Type(2) * std::atan(std::tan(fovRad / Type(2)) * aspect);
const auto vert_fov = static_cast<Type>(2) * std::atan(std::tan(fov_rad / static_cast<Type>(2)) / aspect);
return RadiansToDegrees(horFov);
return radians_to_degrees(vert_fov);
}
template<class Type>
requires std::is_floating_point_v<Type>
[[nodiscard]] Type vertical_fov_to_horizontal(const Type& vertical_fov, const Type& aspect) noexcept
{
const auto fov_as_radians = degrees_to_radians(vertical_fov);
const auto horizontal_fov =
static_cast<Type>(2) * std::atan(std::tan(fov_as_radians / static_cast<Type>(2)) * aspect);
return radians_to_degrees(horizontal_fov);
}
template<class Type>
requires std::is_arithmetic_v<Type>
[[nodiscard]] Type WrapAngle(const Type& angle, const Type& min, const Type& max)
[[nodiscard]] Type wrap_angle(const Type& angle, const Type& min, const Type& max) noexcept
{
if (angle <= max && angle >= min)
return angle;
const Type range = max - min;
Type wrappedAngle = std::fmod(angle - min, range);
Type wrapped_angle = std::fmod(angle - min, range);
if (wrappedAngle < 0)
wrappedAngle += range;
if (wrapped_angle < 0)
wrapped_angle += range;
return wrappedAngle + min;
return wrapped_angle + min;
}
}
} // namespace omath::angles

View File

@@ -13,26 +13,25 @@ namespace omath::collision
public:
Vector3<float> start;
Vector3<float> end;
bool infinite_length = false;
[[nodiscard]]
Vector3<float> DirectionVector() const;
Vector3<float> direction_vector() const noexcept;
[[nodiscard]]
Vector3<float> DirectionVectorNormalized() const;
Vector3<float> direction_vector_normalized() const noexcept;
};
class LineTracer
{
public:
LineTracer() = delete;
[[nodiscard]]
static bool CanTraceLine(const Ray& ray, const Triangle<Vector3<float>>& triangle);
static bool can_trace_line(const Ray& ray, const Triangle<Vector3<float>>& triangle) noexcept;
// Realization of MöllerTrumbore intersection algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
[[nodiscard]]
static Vector3<float> GetRayHitPoint(const Ray& ray, const Triangle<Vector3<float>>& triangle);
static Vector3<float> get_ray_hit_point(const Ray& ray, const Triangle<Vector3<float>>& triangle) noexcept;
};
}
} // namespace omath::collision

View File

@@ -4,95 +4,93 @@
#pragma once
#include <cstdint>
#include "omath/vector3.hpp"
#include "omath/vector4.hpp"
#include <cstdint>
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
namespace omath
{
struct HSV
struct Hsv
{
float hue{};
float saturation{};
float value{};
};
class Color final : public Vector4<float>
{
public:
constexpr Color(const float r, const float g, const float b, const float a) : Vector4(r, g, b, a)
constexpr Color(const float r, const float g, const float b, const float a) noexcept: Vector4(r, g, b, a)
{
Clamp(0.f, 1.f);
clamp(0.f, 1.f);
}
constexpr explicit Color() = default;
constexpr explicit Color() noexcept = default;
[[nodiscard]]
constexpr static Color FromRGBA(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t a)
constexpr static Color from_rgba(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t a) noexcept
{
return Color{Vector4(r, g, b, a) / 255.f};
}
[[nodiscard]]
constexpr static Color FromHSV(float hue, const float saturation, const float value)
constexpr static Color from_hsv(float hue, const float saturation, const float value) noexcept
{
float r{}, g{}, b{};
hue = std::clamp(hue, 0.f, 1.f);
const int i = static_cast<int>(hue * 6.f);
const float f = hue * 6 - i;
const float f = hue * 6.f - static_cast<float>(i);
const float p = value * (1 - saturation);
const float q = value * (1 - f * saturation);
const float t = value * (1 - (1 - f) * saturation);
switch (i % 6)
{
case 0:
r = value, g = t, b = p;
break;
case 1:
r = q, g = value, b = p;
break;
case 2:
r = p, g = value, b = t;
break;
case 3:
r = p, g = q, b = value;
break;
case 4:
r = t, g = p, b = value;
break;
case 5:
r = value, g = p, b = q;
break;
case 0:
r = value, g = t, b = p;
break;
case 1:
r = q, g = value, b = p;
break;
case 2:
r = p, g = value, b = t;
break;
case 3:
r = p, g = q, b = value;
break;
case 4:
r = t, g = p, b = value;
break;
case 5:
r = value, g = p, b = q;
break;
default:
return {0.f, 0.f, 0.f, 0.f};
default:
return {0.f, 0.f, 0.f, 0.f};
}
return {r, g, b, 1.f};
}
[[nodiscard]]
constexpr static Color FromHSV(const HSV& hsv)
constexpr static Color from_hsv(const Hsv& hsv) noexcept
{
return FromHSV(hsv.hue, hsv.saturation, hsv.value);
return from_hsv(hsv.hue, hsv.saturation, hsv.value);
}
[[nodiscard]]
constexpr HSV ToHSV() const
constexpr Hsv to_hsv() const noexcept
{
HSV hsvData;
Hsv hsv_data;
const float& red = x;
const float& green = y;
@@ -102,72 +100,78 @@ namespace omath
const float min = std::min({red, green, blue});
const float delta = max - min;
if (delta == 0.f)
hsvData.hue = 0.f;
hsv_data.hue = 0.f;
else if (max == red)
hsvData.hue = 60.f * (std::fmodf(((green - blue) / delta), 6.f));
hsv_data.hue = 60.f * (std::fmodf(((green - blue) / delta), 6.f));
else if (max == green)
hsvData.hue = 60.f * (((blue - red) / delta) + 2.f);
hsv_data.hue = 60.f * (((blue - red) / delta) + 2.f);
else if (max == blue)
hsvData.hue = 60.f * (((red - green) / delta) + 4.f);
hsv_data.hue = 60.f * (((red - green) / delta) + 4.f);
if (hsvData.hue < 0.f)
hsvData.hue += 360.f;
if (hsv_data.hue < 0.f)
hsv_data.hue += 360.f;
hsvData.hue /= 360.f;
hsvData.saturation = max == 0.f ? 0.f : delta / max;
hsvData.value = max;
hsv_data.hue /= 360.f;
hsv_data.saturation = max == 0.f ? 0.f : delta / max;
hsv_data.value = max;
return hsvData;
return hsv_data;
}
constexpr explicit Color(const Vector4& vec) : Vector4(vec)
constexpr explicit Color(const Vector4& vec) noexcept: Vector4(vec)
{
Clamp(0.f, 1.f);
clamp(0.f, 1.f);
}
constexpr void SetHue(const float hue)
constexpr void set_hue(const float hue) noexcept
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.hue = hue;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
constexpr void SetSaturation(const float saturation)
constexpr void set_saturation(const float saturation) noexcept
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.saturation = saturation;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
constexpr void SetValue(const float value)
constexpr void set_value(const float value) noexcept
{
auto hsv = ToHSV();
auto hsv = to_hsv();
hsv.value = value;
*this = FromHSV(hsv);
*this = from_hsv(hsv);
}
[[nodiscard]]
constexpr Color Blend(const Color& other, float ratio) const
constexpr Color blend(const Color& other, float ratio) const noexcept
{
ratio = std::clamp(ratio, 0.f, 1.f);
return Color(*this * (1.f - ratio) + other * ratio);
}
[[nodiscard]] static constexpr Color Red()
[[nodiscard]] static constexpr Color red()
{
return {1.f, 0.f, 0.f, 1.f};
}
[[nodiscard]] static constexpr Color Green()
[[nodiscard]] static constexpr Color green()
{
return {0.f, 1.f, 0.f, 1.f};
}
[[nodiscard]] static constexpr Color Blue()
[[nodiscard]] static constexpr Color blue()
{
return {0.f, 0.f, 1.f, 1.f};
}
#ifdef OMATH_IMGUI_INTEGRATION
[[nodiscard]]
ImColor to_im_color() const noexcept
{
return {to_im_vec4()};
}
#endif
};
} // namespace omath

View File

@@ -8,14 +8,15 @@
namespace omath::iw_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const noexcept override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const noexcept override;
};
}
} // namespace omath::iw_engine

View File

@@ -3,23 +3,23 @@
//
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::iw_engine
{
constexpr Vector3<float> kAbsUp = {0, 0, 1};
constexpr Vector3<float> kAbsRight = {0, -1, 0};
constexpr Vector3<float> kAbsForward = {1, 0, 0};
constexpr Vector3<float> k_abs_up = {0, 0, 1};
constexpr Vector3<float> k_abs_right = {0, -1, 0};
constexpr Vector3<float> k_abs_forward = {1, 0, 0};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -89.f, 89.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
}
} // namespace omath::iw_engine

View File

@@ -8,19 +8,19 @@
namespace omath::iw_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept;
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept;
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far) noexcept;
} // namespace omath::iw_engine

View File

@@ -7,13 +7,13 @@
namespace omath::opengl_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
void look_at(const Vector3<float>& target) override;
[[nodiscard]] Mat4X4 calc_view_matrix() const noexcept override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const noexcept override;
};
}
} // namespace omath::opengl_engine

View File

@@ -10,17 +10,16 @@
namespace omath::opengl_engine
{
constexpr Vector3<float> kAbsUp = {0, 1, 0};
constexpr Vector3<float> kAbsRight = {1, 0, 0};
constexpr Vector3<float> kAbsForward = {0, 0, -1};
constexpr Vector3<float> k_abs_up = {0, 1, 0};
constexpr Vector3<float> k_abs_right = {1, 0, 0};
constexpr Vector3<float> k_abs_forward = {0, 0, -1};
using Mat4x4 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::COLUMN_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::COLUMN_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::COLUMN_MAJOR>;
using PitchAngle = Angle<float, -90.f, 90.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
}
} // namespace omath::opengl_engine

View File

@@ -8,19 +8,19 @@
namespace omath::opengl_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles) noexcept;
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept;
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept;
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far) noexcept;
} // namespace omath::opengl_engine

View File

@@ -7,14 +7,15 @@
namespace omath::source_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const noexcept override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const noexcept override;
};
}
} // namespace omath::source_engine

View File

@@ -3,23 +3,23 @@
//
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::source_engine
{
constexpr Vector3<float> kAbsUp = {0, 0, 1};
constexpr Vector3<float> kAbsRight = {0, -1, 0};
constexpr Vector3<float> kAbsForward = {1, 0, 0};
constexpr Vector3<float> k_abs_up = {0, 0, 1};
constexpr Vector3<float> k_abs_right = {0, -1, 0};
constexpr Vector3<float> k_abs_forward = {1, 0, 0};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -89.f, 89.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
} // namespace omath::source
} // namespace omath::source_engine

View File

@@ -7,19 +7,19 @@
namespace omath::source_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles) noexcept;
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept;
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
} // namespace omath::source
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far) noexcept;
} // namespace omath::source_engine

View File

@@ -8,14 +8,15 @@
namespace omath::unity_engine
{
class Camera final : public projection::Camera<Mat4x4, ViewAngles>
class Camera final : public projection::Camera<Mat4X4, ViewAngles>
{
public:
Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, float near, float far);
void LookAt(const Vector3<float>& target) override;
void look_at(const Vector3<float>& target) override;
protected:
[[nodiscard]] Mat4x4 CalcViewMatrix() const override;
[[nodiscard]] Mat4x4 CalcProjectionMatrix() const override;
[[nodiscard]] Mat4X4 calc_view_matrix() const noexcept override;
[[nodiscard]] Mat4X4 calc_projection_matrix() const noexcept override;
};
}
} // namespace omath::unity_engine

View File

@@ -4,23 +4,23 @@
#pragma once
#include <omath/vector3.hpp>
#include <omath/mat.hpp>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <omath/view_angles.hpp>
namespace omath::unity_engine
{
constexpr Vector3<float> kAbsUp = {0, 1, 0};
constexpr Vector3<float> kAbsRight = {1, 0, 0};
constexpr Vector3<float> kAbsForward = {0, 0, 1};
constexpr Vector3<float> k_abs_up = {0, 1, 0};
constexpr Vector3<float> k_abs_right = {1, 0, 0};
constexpr Vector3<float> k_abs_forward = {0, 0, 1};
using Mat4x4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3x3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1x3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using Mat4X4 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat3X3 = Mat<4, 4, float, MatStoreType::ROW_MAJOR>;
using Mat1X3 = Mat<1, 3, float, MatStoreType::ROW_MAJOR>;
using PitchAngle = Angle<float, -90.f, 90.f, AngleFlags::Clamped>;
using YawAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using RollAngle = Angle<float, -180.f, 180.f, AngleFlags::Normalized>;
using ViewAngles = omath::ViewAngles<PitchAngle, YawAngle, RollAngle>;
} // namespace omath::source
} // namespace omath::unity_engine

View File

@@ -8,19 +8,19 @@
namespace omath::unity_engine
{
[[nodiscard]]
Vector3<float> ForwardVector(const ViewAngles& angles);
Vector3<float> forward_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> RightVector(const ViewAngles& angles);
Vector3<float> right_vector(const ViewAngles& angles) noexcept;
[[nodiscard]]
Vector3<float> UpVector(const ViewAngles& angles);
Vector3<float> up_vector(const ViewAngles& angles) noexcept;
[[nodiscard]] Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin);
[[nodiscard]] Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept;
[[nodiscard]]
Mat4x4 RotationMatrix(const ViewAngles& angles);
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept;
[[nodiscard]]
Mat4x4 CalcPerspectiveProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
} // namespace omath::source
Mat4X4 calc_perspective_projection_matrix(float field_of_view, float aspect_ratio, float near, float far) noexcept;
} // namespace omath::unity_engine

View File

@@ -2,21 +2,19 @@
// Created by vlad on 9/29/2024.
//
#pragma once
#include "omath/vector3.hpp"
#include <algorithm>
#include <array>
#include <iomanip>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <utility>
#include "omath/vector3.hpp"
#include <numeric>
#ifdef near
#undef near
#endif
#ifdef far
#undef far
#endif
@@ -34,25 +32,22 @@ namespace omath
COLUMN_MAJOR
};
template<typename M1, typename M2>
concept MatTemplateEqual =
(M1::rows == M2::rows) && (M1::columns == M2::columns) &&
std::is_same_v<typename M1::value_type, typename M2::value_type> &&
(M1::store_type == M2::store_type);
template<typename M1, typename M2> concept MatTemplateEqual
= (M1::rows == M2::rows) && (M1::columns == M2::columns)
&& std::is_same_v<typename M1::value_type, typename M2::value_type> && (M1::store_type == M2::store_type);
template<size_t Rows = 0, size_t Columns = 0, class Type = float, MatStoreType StoreType = MatStoreType::ROW_MAJOR>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Mat final
{
public:
constexpr Mat() noexcept
{
Clear();
clear();
}
[[nodiscard]]
constexpr static MatStoreType GetStoreOrdering() noexcept
constexpr static MatStoreType get_store_ordering() noexcept
{
return StoreType;
}
@@ -61,24 +56,24 @@ namespace omath
if (rows.size() != Rows)
throw std::invalid_argument("Initializer list rows size does not match template parameter Rows");
auto rowIt = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++rowIt)
auto row_it = rows.begin();
for (size_t i = 0; i < Rows; ++i, ++row_it)
{
if (rowIt->size() != Columns)
if (row_it->size() != Columns)
throw std::invalid_argument(
"All rows must have the same number of columns as template parameter Columns");
auto colIt = rowIt->begin();
for (size_t j = 0; j < Columns; ++j, ++colIt)
auto col_it = row_it->begin();
for (size_t j = 0; j < Columns; ++j, ++col_it)
{
At(i, j) = std::move(*colIt);
at(i, j) = std::move(*col_it);
}
}
}
constexpr explicit Mat(const Type* rawData)
constexpr explicit Mat(const Type* raw_data)
{
std::copy_n(rawData, Rows * Columns, m_data.begin());
std::copy_n(raw_data, Rows * Columns, m_data.begin());
}
constexpr Mat(const Mat& other) noexcept
@@ -89,13 +84,13 @@ namespace omath
[[nodiscard]]
constexpr Type& operator[](const size_t row, const size_t col)
{
return At(row, col);
return at(row, col);
}
[[nodiscard]]
constexpr Type& operator[](const size_t row, const size_t col) const
{
return At(row, col);
return at(row, col);
}
constexpr Mat(Mat&& other) noexcept
@@ -104,35 +99,35 @@ namespace omath
}
[[nodiscard]]
static constexpr size_t RowCount() noexcept
static constexpr size_t row_count() noexcept
{
return Rows;
}
[[nodiscard]]
static constexpr size_t ColumnsCount() noexcept
static constexpr size_t columns_count() noexcept
{
return Columns;
}
[[nodiscard]]
static consteval MatSize Size() noexcept
static consteval MatSize size() noexcept
{
return {Rows, Columns};
}
[[nodiscard]]
constexpr const Type& At(const size_t rowIndex, const size_t columnIndex) const
constexpr const Type& at(const size_t row_index, const size_t column_index) const
{
#if !defined(NDEBUG) && defined(OMATH_SUPRESS_SAFETY_CHECKS)
if (rowIndex >= Rows || columnIndex >= Columns)
if (row_index >= Rows || column_index >= Columns)
throw std::out_of_range("Index out of range");
#endif
if constexpr (StoreType == MatStoreType::ROW_MAJOR)
return m_data[rowIndex * Columns + columnIndex];
return m_data[row_index * Columns + column_index];
else if constexpr (StoreType == MatStoreType::COLUMN_MAJOR)
return m_data[rowIndex + columnIndex * Rows];
return m_data[row_index + column_index * Rows];
else
{
@@ -141,30 +136,29 @@ namespace omath
}
}
[[nodiscard]] constexpr Type& At(const size_t rowIndex, const size_t columnIndex)
[[nodiscard]] constexpr Type& at(const size_t row_index, const size_t column_index)
{
return const_cast<Type&>(std::as_const(*this).At(rowIndex, columnIndex));
return const_cast<Type&>(std::as_const(*this).at(row_index, column_index));
}
[[nodiscard]]
constexpr Type Sum() const noexcept
constexpr Type sum() const noexcept
{
return std::accumulate(m_data.begin(), m_data.end(), Type(0));
return std::accumulate(m_data.begin(), m_data.end(), static_cast<Type>(0));
}
constexpr void Clear() noexcept
constexpr void clear() noexcept
{
Set(0);
set(static_cast<Type>(0));
}
constexpr void Set(const Type& value) noexcept
constexpr void set(const Type& value) noexcept
{
std::ranges::fill(m_data, value);
}
// Operator overloading for multiplication with another Mat
template<size_t OtherColumns>
[[nodiscard]]
template<size_t OtherColumns> [[nodiscard]]
constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*(const Mat<Columns, OtherColumns, Type, StoreType>& other) const
{
@@ -175,20 +169,19 @@ namespace omath
{
Type sum = 0;
for (size_t k = 0; k < Columns; ++k)
sum += At(i, k) * other.At(k, j);
result.At(i, j) = sum;
sum += at(i, k) * other.at(k, j);
result.at(i, j) = sum;
}
return result;
}
constexpr Mat& operator*=(const Type& f) noexcept
{
std::ranges::for_each(m_data, [&f](auto& val) {val *= f;});
std::ranges::for_each(m_data, [&f](auto& val) { val *= f; });
return *this;
}
template<size_t OtherColumns>
constexpr Mat<Rows, OtherColumns, Type, StoreType>
template<size_t OtherColumns> constexpr Mat<Rows, OtherColumns, Type, StoreType>
operator*=(const Mat<Columns, OtherColumns, Type, StoreType>& other)
{
return *this = *this * other;
@@ -204,7 +197,7 @@ namespace omath
constexpr Mat& operator/=(const Type& value) noexcept
{
std::ranges::for_each(m_data, [&value](auto& val) {val /= value;});
std::ranges::for_each(m_data, [&value](auto& val) { val /= value; });
return *this;
}
@@ -233,41 +226,44 @@ namespace omath
}
[[nodiscard]]
constexpr Mat<Columns, Rows, Type, StoreType> Transposed() const noexcept
constexpr Mat<Columns, Rows, Type, StoreType> transposed() const noexcept
{
Mat<Columns, Rows, Type, StoreType> transposed;
for (size_t i = 0; i < Rows; ++i)
for (size_t j = 0; j < Columns; ++j)
transposed.At(j, i) = At(i, j);
transposed.at(j, i) = at(i, j);
return transposed;
}
[[nodiscard]]
constexpr Type Determinant() const
constexpr Type determinant() const
{
static_assert(Rows == Columns, "Determinant is only defined for square matrices.");
if constexpr (Rows == 1)
return At(0, 0);
return at(0, 0);
if constexpr (Rows == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
else
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
if constexpr (Rows > 2)
{
Type det = 0;
for (size_t i = 0; i < Columns; ++i)
for (size_t column = 0; column < Columns; ++column)
{
const Type cofactor = (i % 2 == 0 ? 1 : -1) * At(0, i) * Minor(0, i).Determinant();
const Type cofactor = at(0, column) * alg_complement(0, column);
det += cofactor;
}
return det;
}
std::unreachable();
}
[[nodiscard]]
constexpr Mat<Rows - 1, Columns - 1, Type, StoreType> Minor(const size_t row, const size_t column) const
constexpr Mat<Rows - 1, Columns - 1, Type, StoreType> strip(const size_t row, const size_t column) const
{
static_assert(Rows - 1 > 0 && Columns - 1 > 0);
Mat<Rows - 1, Columns - 1, Type, StoreType> result;
for (size_t i = 0, m = 0; i < Rows; ++i)
{
@@ -277,7 +273,7 @@ namespace omath
{
if (j == column)
continue;
result.At(m, n) = At(i, j);
result.at(m, n) = at(i, j);
++n;
}
++m;
@@ -286,19 +282,32 @@ namespace omath
}
[[nodiscard]]
constexpr const std::array<Type, Rows * Columns>& RawArray() const
constexpr Type minor(const size_t row, const size_t column) const
{
return strip(row, column).determinant();
}
[[nodiscard]]
constexpr Type alg_complement(const size_t row, const size_t column) const
{
const auto minor_value = minor(row, column);
return (row + column + 2) % 2 == 0 ? minor_value : -minor_value;
}
[[nodiscard]]
constexpr const std::array<Type, Rows * Columns>& raw_array() const
{
return m_data;
}
[[nodiscard]]
constexpr std::array<Type, Rows * Columns>& RawArray()
constexpr std::array<Type, Rows * Columns>& raw_array()
{
return const_cast<std::array<Type, Rows * Columns>>(std::as_const(*this).RawArray());
return m_data;
}
[[nodiscard]]
std::string ToString() const noexcept
std::string to_string() const noexcept
{
std::ostringstream oss;
oss << "[[";
@@ -310,7 +319,7 @@ namespace omath
for (size_t j = 0; j < Columns; ++j)
{
oss << std::setw(9) << std::fixed << std::setprecision(3) << At(i, j);
oss << std::setw(9) << std::fixed << std::setprecision(3) << at(i, j);
if (j != Columns - 1)
oss << ", ";
}
@@ -333,37 +342,55 @@ namespace omath
// Static methods that return fixed-size matrices
[[nodiscard]]
constexpr static Mat<4, 4> ToScreenMat(const Type& screenWidth, const Type& screenHeight) noexcept
constexpr static Mat<4, 4> to_screen_mat(const Type& screen_width, const Type& screen_height) noexcept
{
return {
{screenWidth / 2, 0, 0, 0},
{0, -screenHeight / 2, 0, 0},
{screen_width / 2, 0, 0, 0},
{0, -screen_height / 2, 0, 0},
{0, 0, 1, 0},
{screenWidth / 2, screenHeight / 2, 0, 1},
{screen_width / 2, screen_height / 2, 0, 1},
};
}
[[nodiscard]]
constexpr std::optional<Mat> inverted() const
{
const auto det = determinant();
if (det == 0)
return std::nullopt;
const auto transposed_mat = transposed();
Mat result;
for (std::size_t row = 0; row < Rows; row++)
for (std::size_t column = 0; column < Rows; column++)
result.at(row, column) = transposed_mat.alg_complement(row, column);
result /= det;
return {result};
}
private:
std::array<Type, Rows * Columns> m_data;
};
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr static Mat<1, 4, Type, St> MatRowFromVector(const Vector3<Type>& vector) noexcept
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<1, 4, Type, St> mat_row_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x, vector.y, vector.z, 1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr static Mat<4, 1, Type, St> MatColumnFromVector(const Vector3<Type>& vector) noexcept
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR> [[nodiscard]]
constexpr static Mat<4, 1, Type, St> mat_column_from_vector(const Vector3<Type>& vector) noexcept
{
return {{vector.x}, {vector.y}, {vector.z}, {1}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
constexpr Mat<4, 4, Type, St> MatTranslation(const Vector3<Type>& diff) noexcept
constexpr Mat<4, 4, Type, St> mat_translation(const Vector3<Type>& diff) noexcept
{
return
{
@@ -376,38 +403,38 @@ namespace omath
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisX(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_x(const Angle& angle) noexcept
{
return
{
{1, 0, 0, 0},
{0, angle.Cos(), -angle.Sin(), 0},
{0, angle.Sin(), angle.Cos(), 0},
{0, angle.cos(), -angle.sin(), 0},
{0, angle.sin(), angle.cos(), 0},
{0, 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisY(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_y(const Angle& angle) noexcept
{
return
{
{angle.Cos(), 0, angle.Sin(), 0},
{angle.cos(), 0, angle.sin(), 0},
{0 , 1, 0, 0},
{-angle.Sin(), 0, angle.Cos(), 0},
{-angle.sin(), 0, angle.cos(), 0},
{0 , 0, 0, 1}
};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR, class Angle>
[[nodiscard]]
Mat<4, 4, Type, St> MatRotationAxisZ(const Angle& angle) noexcept
Mat<4, 4, Type, St> mat_rotation_axis_z(const Angle& angle) noexcept
{
return
{
{angle.Cos(), -angle.Sin(), 0, 0},
{angle.Sin(), angle.Cos(), 0, 0},
{angle.cos(), -angle.sin(), 0, 0},
{angle.sin(), angle.cos(), 0, 0},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
};
@@ -415,8 +442,8 @@ namespace omath
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
static Mat<4, 4, Type, St> MatCameraView(const Vector3<Type>& forward, const Vector3<Type>& right,
const Vector3<Type>& up, const Vector3<Type>& cameraOrigin) noexcept
static Mat<4, 4, Type, St> mat_camera_view(const Vector3<Type>& forward, const Vector3<Type>& right,
const Vector3<Type>& up, const Vector3<Type>& camera_origin) noexcept
{
return Mat<4, 4, Type, St>
{
@@ -424,32 +451,31 @@ namespace omath
{up.x, up.y, up.z, 0},
{forward.x, forward.y, forward.z, 0},
{0, 0, 0, 1},
} * MatTranslation<Type, St>(-cameraOrigin);
} * mat_translation<Type, St>(-camera_origin);
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> MatPerspectiveLeftHanded(const float fieldOfView, const float aspectRatio, const float near,
const float far) noexcept
Mat<4, 4, Type, St> mat_perspective_left_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, 1.f, 0.f}};
}
template<class Type = float, MatStoreType St = MatStoreType::ROW_MAJOR>
[[nodiscard]]
Mat<4, 4, Type, St> MatPerspectiveRightHanded(const float fieldOfView, const float aspectRatio, const float near,
const float far) noexcept
Mat<4, 4, Type, St> mat_perspective_right_handed(const float field_of_view, const float aspect_ratio,
const float near, const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, -(far + near) / (far - near), -(2.f * near * far) / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}

View File

@@ -1,8 +1,11 @@
#pragma once
#ifdef OMATH_ENABLE_LEGACY
#include "omath/vector3.hpp"
#include <initializer_list>
#include <memory>
#include <string>
#include "omath/vector3.hpp"
namespace omath
{
@@ -16,51 +19,51 @@ namespace omath
Matrix(const std::initializer_list<std::initializer_list<float>>& rows);
[[nodiscard]]
static Matrix ToScreenMatrix(float screenWidth, float screenHeight);
static Matrix to_screen_matrix(float screen_width, float screen_height);
[[nodiscard]]
static Matrix TranslationMatrix(const Vector3<float>& diff);
static Matrix translation_matrix(const Vector3<float>& diff);
[[nodiscard]]
static Matrix OrientationMatrix(const Vector3<float>& forward, const Vector3<float>& right, const Vector3<float>& up);
static Matrix orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up);
[[nodiscard]]
static Matrix ProjectionMatrix(float fieldOfView, float aspectRatio, float near, float far);
static Matrix projection_matrix(float field_of_view, float aspect_ratio, float near, float far);
Matrix(const Matrix& other);
Matrix(size_t rows, size_t columns, const float* pRaw);
Matrix(size_t rows, size_t columns, const float* raw_data);
Matrix(Matrix&& other) noexcept;
[[nodiscard]]
size_t RowCount() const noexcept;
size_t row_count() const noexcept;
[[nodiscard]]
float& operator[](size_t row, size_t column);
[[nodiscard]]
size_t ColumnsCount() const noexcept;
size_t columns_count() const noexcept;
[[nodiscard]]
std::pair<size_t, size_t> Size() const noexcept;
std::pair<size_t, size_t> size() const noexcept;
[[nodiscard]]
float& At(size_t iRow, size_t iCol);
float& at(size_t row, size_t col);
[[nodiscard]]
float Sum();
float sum();
void SetDataFromRaw(const float* pRawMatrix);
void set_data_from_raw(const float* raw_matrix);
[[nodiscard]]
Matrix Transpose() const;
Matrix transpose() const;
void Set(float val);
void set(float val);
[[nodiscard]]
const float& At(size_t iRow, size_t iCol) const;
const float& at(size_t row, size_t col) const;
Matrix operator*(const Matrix& other) const;
@@ -72,22 +75,22 @@ namespace omath
Matrix& operator/=(float f);
void Clear();
void clear();
[[nodiscard]]
Matrix Strip(size_t row, size_t column) const;
Matrix strip(size_t row, size_t column) const;
[[nodiscard]]
float Minor(size_t i, size_t j) const;
float minor(size_t i, size_t j) const;
[[nodiscard]]
float AlgComplement(size_t i, size_t j) const;
float alg_complement(size_t i, size_t j) const;
[[nodiscard]]
float Determinant() const;
float determinant() const;
[[nodiscard]]
const float* Raw() const;
const float* raw() const;
Matrix& operator=(const Matrix& other);
@@ -96,7 +99,7 @@ namespace omath
Matrix operator/(float f) const;
[[nodiscard]]
std::string ToString() const;
std::string to_string() const;
~Matrix();
@@ -106,3 +109,4 @@ namespace omath
std::unique_ptr<float[]> m_data;
};
} // namespace omath
#endif

View File

@@ -3,9 +3,9 @@
//
#pragma once
#include <vector>
#include "omath/pathfinding/navigation_mesh.hpp"
#include "omath/vector3.hpp"
#include <vector>
namespace omath::pathfinding
{
@@ -14,17 +14,17 @@ namespace omath::pathfinding
{
public:
[[nodiscard]]
static std::vector<Vector3<float>> FindPath(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& navMesh);
static std::vector<Vector3<float>> find_path(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& nav_mesh) noexcept;
private:
[[nodiscard]]
static std::vector<Vector3<float>>
ReconstructFinalPath(const std::unordered_map<Vector3<float>, PathNode>& closedList,
const Vector3<float>& current);
reconstruct_final_path(const std::unordered_map<Vector3<float>, PathNode>& closed_list,
const Vector3<float>& current) noexcept;
[[nodiscard]]
static auto GetPerfectNode(const std::unordered_map<Vector3<float>, PathNode>& openList,
const Vector3<float>& endVertex);
static auto get_perfect_node(const std::unordered_map<Vector3<float>, PathNode>& open_list,
const Vector3<float>& end_vertex) noexcept;
};
} // namespace omath::pathfinding

View File

@@ -4,35 +4,34 @@
#pragma once
#include "omath/vector3.hpp"
#include <expected>
#include <string>
#include <vector>
#include "omath/vector3.hpp"
namespace omath::pathfinding
{
enum Error
{
};
class NavigationMesh final
{
public:
[[nodiscard]]
std::expected<Vector3<float>, std::string> GetClosestVertex(const Vector3<float>& point) const;
std::expected<Vector3<float>, std::string> get_closest_vertex(const Vector3<float>& point) const noexcept;
[[nodiscard]]
const std::vector<Vector3<float>>& GetNeighbors(const Vector3<float>& vertex) const;
const std::vector<Vector3<float>>& get_neighbors(const Vector3<float>& vertex) const noexcept;
[[nodiscard]]
bool Empty() const;
bool empty() const;
[[nodiscard]] std::vector<uint8_t> Serialize() const;
[[nodiscard]] std::vector<uint8_t> serialize() const noexcept;
void Deserialize(const std::vector<uint8_t>& raw);
void deserialize(const std::vector<uint8_t>& raw) noexcept;
std::unordered_map<Vector3<float>, std::vector<Vector3<float>>> m_verTextMap;
std::unordered_map<Vector3<float>, std::vector<Vector3<float>>> m_vertex_map;
};
} // namespace omath::pathfinding

View File

@@ -0,0 +1,80 @@
//
// Created by Vlad on 8/6/2025.
//
#pragma once
#include "omath/engines/iw_engine/formulas.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include <optional>
namespace omath::projectile_prediction::traits
{
class IwEngineTrait final
{
public:
constexpr static Vector3<float> predict_projectile_position(const Projectile& projectile, const float pitch,
const float yaw, const float time,
const float gravity) noexcept
{
auto current_pos = projectile.m_origin
+ iw_engine::forward_vector({iw_engine::PitchAngle::from_degrees(-pitch),
iw_engine::YawAngle::from_degrees(yaw),
iw_engine::RollAngle::from_degrees(0)})
* projectile.m_launch_speed * time;
current_pos.z -= (gravity * projectile.m_gravity_scale) * (time * time) * 0.5f;
return current_pos;
}
[[nodiscard]]
static constexpr Vector3<float> predict_target_position(const Target& target, const float time,
const float gravity) noexcept
{
auto predicted = target.m_origin + target.m_velocity * time;
if (target.m_is_airborne)
predicted.z -= gravity * (time * time) * 0.5f;
return predicted;
}
[[nodiscard]]
static float calc_vector_2d_distance(const Vector3<float>& delta) noexcept
{
return std::sqrt(delta.x * delta.x + delta.y * delta.y);
}
[[nodiscard]]
constexpr static float get_vector_height_coordinate(const Vector3<float>& vec) noexcept
{
return vec.z;
}
[[nodiscard]]
static Vector3<float> calc_viewpoint_from_angles(const Projectile& projectile,
Vector3<float> predicted_target_position,
const std::optional<float> projectile_pitch) noexcept
{
const auto delta2d = calc_vector_2d_distance(predicted_target_position - projectile.m_origin);
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return {predicted_target_position.x, predicted_target_position.y, projectile.m_origin.z + height};
}
// Due to specification of maybe_calculate_projectile_launch_pitch_angle, pitch angle must be:
// 89 look up, -89 look down
[[nodiscard]]
static float calc_direct_pitch_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto distance = origin.distance_to(view_to);
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::asin(delta.z / distance));
}
[[nodiscard]]
static float calc_direct_yaw_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::atan2(delta.y, delta.x));
};
};
} // namespace omath::projectile_prediction::traits

View File

@@ -0,0 +1,79 @@
//
// Created by Vlad on 8/6/2025.
//
#pragma once
#include "omath/engines/opengl_engine/formulas.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include <optional>
namespace omath::projectile_prediction::traits
{
class OpenGlEngineTrait final
{
public:
constexpr static Vector3<float> predict_projectile_position(const Projectile& projectile, const float pitch,
const float yaw, const float time,
const float gravity) noexcept
{
auto current_pos = projectile.m_origin
+ opengl_engine::forward_vector({opengl_engine::PitchAngle::from_degrees(-pitch),
opengl_engine::YawAngle::from_degrees(yaw),
opengl_engine::RollAngle::from_degrees(0)})
* projectile.m_launch_speed * time;
current_pos.y -= (gravity * projectile.m_gravity_scale) * (time * time) * 0.5f;
return current_pos;
}
[[nodiscard]]
static constexpr Vector3<float> predict_target_position(const Target& target, const float time,
const float gravity) noexcept
{
auto predicted = target.m_origin + target.m_velocity * time;
if (target.m_is_airborne)
predicted.y -= gravity * (time * time) * 0.5f;
return predicted;
}
[[nodiscard]]
static float calc_vector_2d_distance(const Vector3<float>& delta) noexcept
{
return std::sqrt(delta.x * delta.x + delta.z * delta.z);
}
[[nodiscard]]
constexpr static float get_vector_height_coordinate(const Vector3<float>& vec) noexcept
{
return vec.y;
}
[[nodiscard]]
static Vector3<float> calc_viewpoint_from_angles(const Projectile& projectile,
Vector3<float> predicted_target_position,
const std::optional<float> projectile_pitch) noexcept
{
const auto delta2d = calc_vector_2d_distance(predicted_target_position - projectile.m_origin);
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return {predicted_target_position.x, predicted_target_position.y + height, projectile.m_origin.z};
}
// Due to specification of maybe_calculate_projectile_launch_pitch_angle, pitch angle must be:
// 89 look up, -89 look down
[[nodiscard]]
static float calc_direct_pitch_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto distance = origin.distance_to(view_to);
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::asin(delta.y / distance));
}
[[nodiscard]]
static float calc_direct_yaw_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::atan2(delta.z, delta.x));
};
};
} // namespace omath::projectile_prediction::traits

View File

@@ -0,0 +1,80 @@
//
// Created by Vlad on 8/3/2025.
//
#pragma once
#include "omath/engines/source_engine/formulas.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include <optional>
namespace omath::projectile_prediction::traits
{
class SourceEngineTrait final
{
public:
constexpr static Vector3<float> predict_projectile_position(const Projectile& projectile, const float pitch,
const float yaw, const float time,
const float gravity) noexcept
{
auto current_pos = projectile.m_origin
+ source_engine::forward_vector({source_engine::PitchAngle::from_degrees(-pitch),
source_engine::YawAngle::from_degrees(yaw),
source_engine::RollAngle::from_degrees(0)})
* projectile.m_launch_speed * time;
current_pos.z -= (gravity * projectile.m_gravity_scale) * (time * time) * 0.5f;
return current_pos;
}
[[nodiscard]]
static constexpr Vector3<float> predict_target_position(const Target& target, const float time,
const float gravity) noexcept
{
auto predicted = target.m_origin + target.m_velocity * time;
if (target.m_is_airborne)
predicted.z -= gravity * (time * time) * 0.5f;
return predicted;
}
[[nodiscard]]
static float calc_vector_2d_distance(const Vector3<float>& delta) noexcept
{
return std::sqrt(delta.x * delta.x + delta.y * delta.y);
}
[[nodiscard]]
constexpr static float get_vector_height_coordinate(const Vector3<float>& vec) noexcept
{
return vec.z;
}
[[nodiscard]]
static Vector3<float> calc_viewpoint_from_angles(const Projectile& projectile,
Vector3<float> predicted_target_position,
const std::optional<float> projectile_pitch) noexcept
{
const auto delta2d = calc_vector_2d_distance(predicted_target_position - projectile.m_origin);
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return {predicted_target_position.x, predicted_target_position.y, projectile.m_origin.z + height};
}
// Due to specification of maybe_calculate_projectile_launch_pitch_angle, pitch angle must be:
// 89 look up, -89 look down
[[nodiscard]]
static float calc_direct_pitch_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto distance = origin.distance_to(view_to);
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::asin(delta.z / distance));
}
[[nodiscard]]
static float calc_direct_yaw_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::atan2(delta.y, delta.x));
};
};
} // namespace omath::projectile_prediction::traits

View File

@@ -0,0 +1,79 @@
//
// Created by Vlad on 8/6/2025.
//
#pragma once
#include "omath/engines/unity_engine/formulas.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include <optional>
namespace omath::projectile_prediction::traits
{
class UnityEngineTrait final
{
public:
constexpr static Vector3<float> predict_projectile_position(const Projectile& projectile, const float pitch,
const float yaw, const float time,
const float gravity) noexcept
{
auto current_pos = projectile.m_origin
+ unity_engine::forward_vector({unity_engine::PitchAngle::from_degrees(-pitch),
unity_engine::YawAngle::from_degrees(yaw),
unity_engine::RollAngle::from_degrees(0)})
* projectile.m_launch_speed * time;
current_pos.y -= (gravity * projectile.m_gravity_scale) * (time * time) * 0.5f;
return current_pos;
}
[[nodiscard]]
static constexpr Vector3<float> predict_target_position(const Target& target, const float time,
const float gravity) noexcept
{
auto predicted = target.m_origin + target.m_velocity * time;
if (target.m_is_airborne)
predicted.y -= gravity * (time * time) * 0.5f;
return predicted;
}
[[nodiscard]]
static float calc_vector_2d_distance(const Vector3<float>& delta) noexcept
{
return std::sqrt(delta.x * delta.x + delta.z * delta.z);
}
[[nodiscard]]
constexpr static float get_vector_height_coordinate(const Vector3<float>& vec) noexcept
{
return vec.y;
}
[[nodiscard]]
static Vector3<float> calc_viewpoint_from_angles(const Projectile& projectile,
Vector3<float> predicted_target_position,
const std::optional<float> projectile_pitch) noexcept
{
const auto delta2d = calc_vector_2d_distance(predicted_target_position - projectile.m_origin);
const auto height = delta2d * std::tan(angles::degrees_to_radians(projectile_pitch.value()));
return {predicted_target_position.x, predicted_target_position.y + height, projectile.m_origin.z};
}
// Due to specification of maybe_calculate_projectile_launch_pitch_angle, pitch angle must be:
// 89 look up, -89 look down
[[nodiscard]]
static float calc_direct_pitch_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto distance = origin.distance_to(view_to);
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::asin(delta.y / distance));
}
[[nodiscard]]
static float calc_direct_yaw_angle(const Vector3<float>& origin, const Vector3<float>& view_to) noexcept
{
const auto delta = view_to - origin;
return angles::radians_to_degrees(std::atan2(delta.z, delta.x));
};
};
} // namespace omath::projectile_prediction::traits

View File

@@ -6,15 +6,14 @@
#include "omath/projectile_prediction/target.hpp"
#include "omath/vector3.hpp"
namespace omath::projectile_prediction
{
class ProjPredEngine
class ProjPredEngineInterface
{
public:
[[nodiscard]]
virtual std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const = 0;
virtual ~ProjPredEngine() = default;
virtual std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const = 0;
virtual ~ProjPredEngineInterface() = default;
};
} // namespace omath::projectile_prediction

View File

@@ -6,21 +6,23 @@
namespace omath::projectile_prediction
{
class ProjPredEngineAVX2 final : public ProjPredEngine
class ProjPredEngineAvx2 final : public ProjPredEngineInterface
{
public:
[[nodiscard]] std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const override;
[[nodiscard]] std::optional<Vector3<float>>
maybe_calculate_aim_point(const Projectile& projectile, const Target& target) const override;
ProjPredEngineAVX2(float gravityConstant, float simulationTimeStep, float maximumSimulationTime);
~ProjPredEngineAVX2() override = default;
ProjPredEngineAvx2(float gravity_constant, float simulation_time_step, float maximum_simulation_time);
~ProjPredEngineAvx2() override = default;
private:
[[nodiscard]] static std::optional<float> CalculatePitch(const Vector3<float>& projOrigin, const Vector3<float>& targetPos,
float bulletGravity, float v0, float time);
const float m_gravityConstant;
const float m_simulationTimeStep;
const float m_maximumSimulationTime;
[[nodiscard]] static std::optional<float> calculate_pitch(const Vector3<float>& proj_origin,
const Vector3<float>& target_pos,
float bullet_gravity, float v0, float time) ;
// We use [[maybe_unused]] here since AVX2 is not available for ARM and ARM64 CPU
[[maybe_unused]] const float m_gravity_constant;
[[maybe_unused]] const float m_simulation_time_step;
[[maybe_unused]] const float m_maximum_simulation_time;
};
} // namespace omath::projectile_prediction

View File

@@ -4,38 +4,106 @@
#pragma once
#include <optional>
#include "engine_traits/source_engine_trait.hpp"
#include "omath/projectile_prediction/proj_pred_engine.hpp"
#include "omath/projectile_prediction/projectile.hpp"
#include "omath/projectile_prediction/target.hpp"
#include "omath/vector3.hpp"
#include <optional>
namespace omath::projectile_prediction
{
class ProjPredEngineLegacy final : public ProjPredEngine
template<class EngineTrait = traits::SourceEngineTrait>
class ProjPredEngineLegacy final : public ProjPredEngineInterface
{
public:
explicit ProjPredEngineLegacy(float gravityConstant, float simulationTimeStep, float maximumSimulationTime,
float distanceTolerance);
explicit ProjPredEngineLegacy(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time, const float distance_tolerance)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time), m_distance_tolerance(distance_tolerance)
{
}
[[nodiscard]]
std::optional<Vector3<float>> MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const override;
std::optional<Vector3<float>> maybe_calculate_aim_point(const Projectile& projectile,
const Target& target) const override
{
for (float time = 0.f; time < m_maximum_simulation_time; time += m_simulation_time_step)
{
const auto predicted_target_position =
EngineTrait::predict_target_position(target, time, m_gravity_constant);
const auto projectile_pitch =
maybe_calculate_projectile_launch_pitch_angle(projectile, predicted_target_position);
if (!projectile_pitch.has_value()) [[unlikely]]
continue;
if (!is_projectile_reached_target(predicted_target_position, projectile, projectile_pitch.value(),
time))
continue;
return EngineTrait::calc_viewpoint_from_angles(projectile, predicted_target_position, projectile_pitch);
}
return std::nullopt;
}
private:
const float m_gravityConstant;
const float m_simulationTimeStep;
const float m_maximumSimulationTime;
const float m_distanceTolerance;
const float m_gravity_constant;
const float m_simulation_time_step;
const float m_maximum_simulation_time;
const float m_distance_tolerance;
// Realization of this formula:
// https://stackoverflow.com/questions/54917375/how-to-calculate-the-angle-to-shoot-a-bullet-in-order-to-hit-a-moving-target
/*
\[
\theta \;=\; \arctan\!\Biggl(
\frac{%
v^{2}\;\pm\;\sqrt{\,v^{4}-g\!\left(gx^{2}+2yv^{2}\right)\,}
}{%
gx
}\Biggr)
\]
*/
[[nodiscard]]
std::optional<float> MaybeCalculateProjectileLaunchPitchAngle(const Projectile& projectile,
const Vector3<float>& targetPosition) const;
std::optional<float>
maybe_calculate_projectile_launch_pitch_angle(const Projectile& projectile,
const Vector3<float>& target_position) const noexcept
{
const auto bullet_gravity = m_gravity_constant * projectile.m_gravity_scale;
if (bullet_gravity == 0.f)
return EngineTrait::calc_direct_pitch_angle(projectile.m_origin, target_position);
const auto delta = target_position - projectile.m_origin;
const auto distance2d = EngineTrait::calc_vector_2d_distance(delta);
const auto distance2d_sqr = distance2d * distance2d;
const auto launch_speed_sqr = projectile.m_launch_speed * projectile.m_launch_speed;
float root = launch_speed_sqr * launch_speed_sqr
- bullet_gravity
* (bullet_gravity * distance2d_sqr
+ 2.0f * EngineTrait::get_vector_height_coordinate(delta) * launch_speed_sqr);
if (root < 0.0f) [[unlikely]]
return std::nullopt;
root = std::sqrt(root);
const float angle = std::atan((launch_speed_sqr - root) / (bullet_gravity * distance2d));
return angles::radians_to_degrees(angle);
}
[[nodiscard]]
bool IsProjectileReachedTarget(const Vector3<float>& targetPosition, const Projectile& projectile, float pitch,
float time) const;
bool is_projectile_reached_target(const Vector3<float>& target_position, const Projectile& projectile,
const float pitch, const float time) const noexcept
{
const auto yaw = EngineTrait::calc_direct_yaw_angle(projectile.m_origin, target_position);
const auto projectile_position =
EngineTrait::predict_projectile_position(projectile, pitch, yaw, time, m_gravity_constant);
return projectile_position.distance_to(target_position) <= m_distance_tolerance;
}
};
} // namespace omath::projectile_prediction

View File

@@ -10,12 +10,8 @@ namespace omath::projectile_prediction
class Projectile final
{
public:
[[nodiscard]]
Vector3<float> PredictPosition(float pitch, float yaw, float time, float gravity) const;
Vector3<float> m_origin;
float m_launchSpeed{};
float m_gravityScale{};
float m_launch_speed{};
float m_gravity_scale{};
};
}
} // namespace omath::projectile_prediction

View File

@@ -10,20 +10,8 @@ namespace omath::projectile_prediction
class Target final
{
public:
[[nodiscard]]
constexpr Vector3<float> PredictPosition(const float time, const float gravity) const
{
auto predicted = m_origin + m_velocity * time;
if (m_isAirborne)
predicted.z -= gravity * std::pow(time, 2.f) * 0.5f;
return predicted;
}
Vector3<float> m_origin;
Vector3<float> m_velocity;
bool m_isAirborne{};
bool m_is_airborne{};
};
}
} // namespace omath::projectile_prediction

View File

@@ -4,12 +4,12 @@
#pragma once
#include "omath/projection/error_codes.hpp"
#include <expected>
#include <omath/angle.hpp>
#include <omath/mat.hpp>
#include <omath/vector3.hpp>
#include <type_traits>
#include "omath/projection/error_codes.hpp"
namespace omath::projection
{
@@ -19,157 +19,157 @@ namespace omath::projection
float m_width;
float m_height;
[[nodiscard]] constexpr float AspectRatio() const
[[nodiscard]] constexpr float aspect_ratio() const
{
return m_width / m_height;
}
};
using FieldOfView = Angle<float, 0.f, 180.f, AngleFlags::Clamped>;
template<class Mat4x4Type, class ViewAnglesType>
template<class Mat4X4Type, class ViewAnglesType>
class Camera
{
public:
virtual ~Camera() = default;
Camera(const Vector3<float>& position, const ViewAnglesType& viewAngles, const ViewPort& viewPort,
const FieldOfView& fov, const float near, const float far) :
m_viewPort(viewPort), m_fieldOfView(fov), m_farPlaneDistance(far), m_nearPlaneDistance(near),
m_viewAngles(viewAngles), m_origin(position)
Camera(const Vector3<float>& position, const ViewAnglesType& view_angles, const ViewPort& view_port,
const FieldOfView& fov, const float near, const float far) noexcept
: m_view_port(view_port), m_field_of_view(fov), m_far_plane_distance(far), m_near_plane_distance(near),
m_view_angles(view_angles), m_origin(position)
{
}
protected:
virtual void LookAt(const Vector3<float>& target) = 0;
virtual void look_at(const Vector3<float>& target) = 0;
[[nodiscard]] virtual Mat4x4Type CalcViewMatrix() const = 0;
[[nodiscard]] virtual Mat4X4Type calc_view_matrix() const noexcept = 0;
[[nodiscard]] virtual Mat4x4Type CalcProjectionMatrix() const = 0;
[[nodiscard]] virtual Mat4X4Type calc_projection_matrix() const noexcept = 0;
[[nodiscard]] Mat4x4Type CalcViewProjectionMatrix() const
[[nodiscard]] Mat4X4Type calc_view_projection_matrix() const noexcept
{
return CalcProjectionMatrix() * CalcViewMatrix();
return calc_projection_matrix() * calc_view_matrix();
}
public:
[[nodiscard]] const Mat4x4Type& GetViewProjectionMatrix() const
[[nodiscard]] const Mat4X4Type& get_view_projection_matrix() const noexcept
{
if (!m_viewProjectionMatrix.has_value())
m_viewProjectionMatrix = CalcViewProjectionMatrix();
if (!m_view_projection_matrix.has_value())
m_view_projection_matrix = calc_view_projection_matrix();
return m_viewProjectionMatrix.value();
return m_view_projection_matrix.value();
}
void SetFieldOfView(const FieldOfView& fov)
void set_field_of_view(const FieldOfView& fov) noexcept
{
m_fieldOfView = fov;
m_field_of_view = fov;
m_view_projection_matrix = std::nullopt;
}
void SetNearPlane(const float near)
void set_near_plane(const float near) noexcept
{
m_nearPlaneDistance = near;
m_near_plane_distance = near;
m_view_projection_matrix = std::nullopt;
}
void SetFarPlane(const float far)
void set_far_plane(const float far) noexcept
{
m_farPlaneDistance = far;
m_far_plane_distance = far;
m_view_projection_matrix = std::nullopt;
}
void SetViewAngles(const ViewAnglesType& viewAngles)
void set_view_angles(const ViewAnglesType& view_angles) noexcept
{
m_viewAngles = viewAngles;
m_view_angles = view_angles;
m_view_projection_matrix = std::nullopt;
}
void SetOrigin(const Vector3<float>& origin)
void set_origin(const Vector3<float>& origin) noexcept
{
m_origin = origin;
m_view_projection_matrix = std::nullopt;
}
void SetViewPort(const ViewPort& viewPort)
void set_view_port(const ViewPort& view_port) noexcept
{
m_viewPort = viewPort;
m_view_port = view_port;
m_view_projection_matrix = std::nullopt;
}
[[nodiscard]] const FieldOfView& GetFieldOfView() const
[[nodiscard]] const FieldOfView& get_field_of_view() const noexcept
{
return m_fieldOfView;
return m_field_of_view;
}
[[nodiscard]] const float& GetNearPlane() const
[[nodiscard]] const float& get_near_plane() const noexcept
{
return m_nearPlaneDistance;
return m_near_plane_distance;
}
[[nodiscard]] const float& GetFarPlane() const
[[nodiscard]] const float& get_far_plane() const noexcept
{
return m_farPlaneDistance;
return m_far_plane_distance;
}
[[nodiscard]] const ViewAnglesType& GetViewAngles() const
[[nodiscard]] const ViewAnglesType& get_view_angles() const noexcept
{
return m_viewAngles;
return m_view_angles;
}
[[nodiscard]] const Vector3<float>& GetOrigin() const
[[nodiscard]] const Vector3<float>& get_origin() const noexcept
{
return m_origin;
}
[[nodiscard]] std::expected<Vector3<float>, Error> WorldToScreen(const Vector3<float>& worldPosition) const
[[nodiscard]] std::expected<Vector3<float>, Error>
world_to_screen(const Vector3<float>& world_position) const noexcept
{
auto normalizedCords = WorldToViewPort(worldPosition);
auto normalized_cords = world_to_view_port(world_position);
if (!normalizedCords.has_value())
return std::unexpected{normalizedCords.error()};
if (!normalized_cords.has_value())
return std::unexpected{normalized_cords.error()};
return NdcToScreenPosition(*normalizedCords);
return ndc_to_screen_position(*normalized_cords);
}
[[nodiscard]] std::expected<Vector3<float>, Error> WorldToViewPort(const Vector3<float>& worldPosition) const
[[nodiscard]] std::expected<Vector3<float>, Error>
world_to_view_port(const Vector3<float>& world_position) const noexcept
{
auto projected = GetViewProjectionMatrix() *
MatColumnFromVector<float, Mat4x4Type::GetStoreOrdering()>(worldPosition);
auto projected = get_view_projection_matrix()
* mat_column_from_vector<float, Mat4X4Type::get_store_ordering()>(world_position);
if (projected.At(3, 0) == 0.0f)
if (projected.at(3, 0) == 0.0f)
return std::unexpected(Error::WORLD_POSITION_IS_OUT_OF_SCREEN_BOUNDS);
projected /= projected.At(3, 0);
projected /= projected.at(3, 0);
if (IsNdcOutOfBounds(projected))
if (is_ndc_out_of_bounds(projected))
return std::unexpected(Error::WORLD_POSITION_IS_OUT_OF_SCREEN_BOUNDS);
return Vector3<float>{projected.At(0, 0), projected.At(1, 0), projected.At(2, 0)};
return Vector3<float>{projected.at(0, 0), projected.at(1, 0), projected.at(2, 0)};
}
protected:
ViewPort m_viewPort{};
Angle<float, 0.f, 180.f, AngleFlags::Clamped> m_fieldOfView;
ViewPort m_view_port{};
Angle<float, 0.f, 180.f, AngleFlags::Clamped> m_field_of_view;
mutable std::optional<Mat4x4Type> m_viewProjectionMatrix;
mutable std::optional<Mat4X4Type> m_view_projection_matrix;
float m_farPlaneDistance;
float m_nearPlaneDistance;
float m_far_plane_distance;
float m_near_plane_distance;
ViewAnglesType m_viewAngles;
ViewAnglesType m_view_angles;
Vector3<float> m_origin;
private:
template<class Type>
[[nodiscard]]
constexpr static bool IsNdcOutOfBounds(const Type& ndc)
[[nodiscard]] constexpr static bool is_ndc_out_of_bounds(const Type& ndc) noexcept
{
return std::ranges::any_of(ndc.RawArray(), [](const auto& val) { return val < -1 || val > 1; });
return std::ranges::any_of(ndc.raw_array(), [](const auto& val) { return val < -1 || val > 1; });
}
[[nodiscard]] Vector3<float> NdcToScreenPosition(const Vector3<float>& ndc) const
[[nodiscard]] Vector3<float> ndc_to_screen_position(const Vector3<float>& ndc) const noexcept
{
return
{
(ndc.x + 1.f) / 2.f * m_viewPort.m_width,
(1.f - ndc.y) / 2.f * m_viewPort.m_height,
ndc.z
};
return {(ndc.x + 1.f) / 2.f * m_view_port.m_width, (1.f - ndc.y) / 2.f * m_view_port.m_height, ndc.z};
}
};
} // namespace omath::projection

View File

@@ -5,7 +5,6 @@
#pragma once
#include <cstdint>
namespace omath::projection
{
enum class Error : uint16_t

View File

@@ -6,15 +6,15 @@
namespace omath
{
/*
|\
| \
a | \ hypot
| \
-----
b
*/
/*
v1
|\
| \
a | \ hypot
| \
v2 ----- v3
b
*/
template<class Vector>
class Triangle final
@@ -31,52 +31,53 @@ namespace omath
Vector3<float> m_vertex3;
[[nodiscard]]
constexpr Vector3<float> CalculateNormal() const
constexpr Vector3<float> calculate_normal() const
{
const auto b = SideBVector();
const auto a = SideAVector();
return b.Cross(a).Normalized();
const auto b = side_b_vector();
const auto a = side_a_vector();
return b.cross(a).normalized();
}
[[nodiscard]]
float SideALength() const
float side_a_length() const
{
return m_vertex1.DistTo(m_vertex2);
return m_vertex1.distance_to(m_vertex2);
}
[[nodiscard]]
float SideBLength() const
float side_b_length() const
{
return m_vertex3.DistTo(m_vertex2);
return m_vertex3.distance_to(m_vertex2);
}
[[nodiscard]]
constexpr Vector3<float> SideAVector() const
constexpr Vector3<float> side_a_vector() const
{
return m_vertex1 - m_vertex2;
}
[[nodiscard]]
constexpr float Hypot() const
constexpr float hypot() const
{
return m_vertex1.DistTo(m_vertex3);
return m_vertex1.distance_to(m_vertex3);
}
[[nodiscard]]
constexpr bool IsRectangular() const
constexpr bool is_rectangular() const
{
const auto sideA = SideALength();
const auto sideB = SideBLength();
const auto hypot = Hypot();
const auto side_a = side_a_length();
const auto side_b = side_b_length();
const auto hypot_value = hypot();
return std::abs(sideA*sideA + sideB*sideB - hypot*hypot) <= 0.0001f;
return std::abs(side_a * side_a + side_b * side_b - hypot_value * hypot_value) <= 0.0001f;
}
[[nodiscard]]
constexpr Vector3<float> SideBVector() const
constexpr Vector3<float> side_b_vector() const
{
return m_vertex3 - m_vertex2;
}
[[nodiscard]]
constexpr Vector3<float> MidPoint() const
constexpr Vector3<float> mid_point() const
{
return (m_vertex1 + m_vertex2 + m_vertex3) / 3;
}

View File

@@ -10,12 +10,11 @@
#include <imgui.h>
#endif
namespace omath
{
template<class Type>
requires std::is_arithmetic_v<Type>
requires std::is_arithmetic_v<Type>
class Vector2
{
public:
@@ -25,184 +24,189 @@ namespace omath
// Constructors
constexpr Vector2() = default;
constexpr Vector2(const Type& x, const Type& y) : x(x), y(y)
constexpr Vector2(const Type& x, const Type& y) noexcept: x(x), y(y)
{
}
// Equality operators
[[nodiscard]]
constexpr bool operator==(const Vector2& src) const
constexpr bool operator==(const Vector2& other) const noexcept
{
return x == src.x && y == src.y;
return x == other.x && y == other.y;
}
[[nodiscard]]
constexpr bool operator!=(const Vector2& src) const
constexpr bool operator!=(const Vector2& other) const noexcept
{
return !(*this == src);
return !(*this == other);
}
// Compound assignment operators
constexpr Vector2& operator+=(const Vector2& v)
constexpr Vector2& operator+=(const Vector2& other) noexcept
{
x += v.x;
y += v.y;
x += other.x;
y += other.y;
return *this;
}
constexpr Vector2& operator-=(const Vector2& v)
constexpr Vector2& operator-=(const Vector2& other) noexcept
{
x -= v.x;
y -= v.y;
x -= other.x;
y -= other.y;
return *this;
}
constexpr Vector2& operator*=(const Vector2& v)
constexpr Vector2& operator*=(const Vector2& other) noexcept
{
x *= v.x;
y *= v.y;
x *= other.x;
y *= other.y;
return *this;
}
constexpr Vector2& operator/=(const Vector2& v)
constexpr Vector2& operator/=(const Vector2& other) noexcept
{
x /= v.x;
y /= v.y;
x /= other.x;
y /= other.y;
return *this;
}
constexpr Vector2& operator*=(const Type& fl)
constexpr Vector2& operator*=(const Type& value) noexcept
{
x *= fl;
y *= fl;
x *= value;
y *= value;
return *this;
}
constexpr Vector2& operator/=(const Type& fl)
constexpr Vector2& operator/=(const Type& value) noexcept
{
x /= fl;
y /= fl;
x /= value;
y /= value;
return *this;
}
constexpr Vector2& operator+=(const Type& fl)
constexpr Vector2& operator+=(const Type& value) noexcept
{
x += fl;
y += fl;
x += value;
y += value;
return *this;
}
constexpr Vector2& operator-=(const Type& fl)
constexpr Vector2& operator-=(const Type& value) noexcept
{
x -= fl;
y -= fl;
x -= value;
y -= value;
return *this;
}
// Basic vector operations
[[nodiscard]] Type DistTo(const Vector2& vOther) const
[[nodiscard]] Type distance_to(const Vector2& other) const noexcept
{
return std::sqrt(DistToSqr(vOther));
return std::sqrt(distance_to_sqr(other));
}
[[nodiscard]] constexpr Type DistToSqr(const Vector2& vOther) const
[[nodiscard]] constexpr Type distance_to_sqr(const Vector2& other) const noexcept
{
return (x - vOther.x) * (x - vOther.x) + (y - vOther.y) * (y - vOther.y);
return (x - other.x) * (x - other.x) + (y - other.y) * (y - other.y);
}
[[nodiscard]] constexpr Type Dot(const Vector2& vOther) const
[[nodiscard]] constexpr Type dot(const Vector2& other) const noexcept
{
return x * vOther.x + y * vOther.y;
return x * other.x + y * other.y;
}
#ifndef _MSC_VER
[[nodiscard]] constexpr Type Length() const
[[nodiscard]] constexpr Type length() const noexcept
{
return std::hypot(this->x, this->y);
}
[[nodiscard]] constexpr Vector2 Normalized() const
[[nodiscard]] constexpr Vector2 normalized() const noexcept
{
const Type len = Length();
const Type len = length();
return len > 0.f ? *this / len : *this;
}
#else
[[nodiscard]] Type Length() const
[[nodiscard]] Type length() const noexcept
{
return std::hypot(x, y);
}
[[nodiscard]] Vector2 Normalized() const
[[nodiscard]] Vector2 normalized() const noexcept
{
const Type len = Length();
return len > 0.f ? *this / len : *this;
const Type len = length();
return len > static_cast<Type>(0) ? *this / len : *this;
}
#endif
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const noexcept
{
return x * x + y * y;
}
constexpr Vector2& Abs()
constexpr Vector2& abs() noexcept
{
// FIXME: Replace with std::abs, if it will become constexprable
x = x < 0 ? -x : x;
y = y < 0 ? -y : y;
x = x < static_cast<Type>(0) ? -x : x;
y = y < static_cast<Type>(0) ? -y : y;
return *this;
}
[[nodiscard]] constexpr Vector2 operator-() const
[[nodiscard]] constexpr Vector2 operator-() const noexcept
{
return {-x, -y};
}
// Binary arithmetic operators
[[nodiscard]] constexpr Vector2 operator+(const Vector2& v) const
[[nodiscard]] constexpr Vector2 operator+(const Vector2& other) const noexcept
{
return {x + v.x, y + v.y};
return {x + other.x, y + other.y};
}
[[nodiscard]] constexpr Vector2 operator-(const Vector2& v) const
[[nodiscard]] constexpr Vector2 operator-(const Vector2& other) const noexcept
{
return {x - v.x, y - v.y};
return {x - other.x, y - other.y};
}
[[nodiscard]] constexpr Vector2 operator*(const float fl) const
[[nodiscard]] constexpr Vector2 operator*(const Type& value) const noexcept
{
return {x * fl, y * fl};
return {x * value, y * value};
}
[[nodiscard]] constexpr Vector2 operator/(const float fl) const
[[nodiscard]] constexpr Vector2 operator/(const Type& value) const noexcept
{
return {x / fl, y / fl};
return {x / value, y / value};
}
// Sum of elements
[[nodiscard]] constexpr Type Sum() const
[[nodiscard]] constexpr Type sum() const noexcept
{
return x + y;
}
[[nodiscard]]
constexpr std::tuple<Type, Type> AsTuple() const
constexpr std::tuple<Type, Type> as_tuple() const noexcept
{
return std::make_tuple(x, y);
}
#ifdef OMATH_IMGUI_INTEGRATION
[[nodiscard]]
ImVec2 ToImVec2() const
ImVec2 to_im_vec2() const noexcept
{
return {static_cast<float>(this->x), static_cast<float>(this->y)};
}
[[nodiscard]]
static Vector3<float> from_im_vec2(const ImVec2& other) noexcept
{
return {static_cast<Type>(other.x), static_cast<Type>(other.y)};
}
#endif
};
} // namespace omath

View File

@@ -4,11 +4,11 @@
#pragma once
#include "omath/angle.hpp"
#include "omath/vector2.hpp"
#include <cstdint>
#include <expected>
#include <functional>
#include "omath/angle.hpp"
#include "omath/vector2.hpp"
namespace omath
{
@@ -18,264 +18,258 @@ namespace omath
IMPOSSIBLE_BETWEEN_ANGLE,
};
template<class Type> requires std::is_arithmetic_v<Type>
template<class Type>
requires std::is_arithmetic_v<Type>
class Vector3 : public Vector2<Type>
{
public:
Type z = static_cast<Type>(0);
constexpr Vector3(const Type& x, const Type& y, const Type& z) : Vector2<Type>(x, y), z(z) { }
constexpr Vector3() : Vector2<Type>() {};
[[nodiscard]] constexpr bool operator==(const Vector3& src) const
constexpr Vector3(const Type& x, const Type& y, const Type& z) noexcept: Vector2<Type>(x, y), z(z)
{
return Vector2<Type>::operator==(src) && (src.z == z);
}
constexpr Vector3() noexcept: Vector2<Type>() {};
[[nodiscard]] constexpr bool operator==(const Vector3& other) const noexcept
{
return Vector2<Type>::operator==(other) && (other.z == z);
}
[[nodiscard]] constexpr bool operator!=(const Vector3& src) const
[[nodiscard]] constexpr bool operator!=(const Vector3& other) const noexcept
{
return !(*this == src);
return !(*this == other);
}
constexpr Vector3& operator+=(const Vector3& v)
constexpr Vector3& operator+=(const Vector3& other) noexcept
{
Vector2<Type>::operator+=(v);
z += v.z;
Vector2<Type>::operator+=(other);
z += other.z;
return *this;
}
constexpr Vector3& operator-=(const Vector3& v)
constexpr Vector3& operator-=(const Vector3& other) noexcept
{
Vector2<Type>::operator-=(v);
z -= v.z;
Vector2<Type>::operator-=(other);
z -= other.z;
return *this;
}
constexpr Vector3& operator*=(const float fl)
constexpr Vector3& operator*=(const Type& value) noexcept
{
Vector2<Type>::operator*=(fl);
z *= fl;
Vector2<Type>::operator*=(value);
z *= value;
return *this;
}
constexpr Vector3& operator*=(const Vector3& v)
constexpr Vector3& operator*=(const Vector3& other) noexcept
{
Vector2<Type>::operator*=(v);
z *= v.z;
Vector2<Type>::operator*=(other);
z *= other.z;
return *this;
}
constexpr Vector3& operator/=(const Vector3& v)
constexpr Vector3& operator/=(const Vector3& other) noexcept
{
Vector2<Type>::operator/=(v);
z /= v.z;
Vector2<Type>::operator/=(other);
z /= other.z;
return *this;
}
constexpr Vector3& operator+=(const float fl)
constexpr Vector3& operator+=(const Type& value) noexcept
{
Vector2<Type>::operator+=(fl);
z += fl;
Vector2<Type>::operator+=(value);
z += value;
return *this;
}
constexpr Vector3& operator/=(const float fl)
constexpr Vector3& operator/=(const Type& value) noexcept
{
Vector2<Type>::operator/=(fl);
z /= fl;
Vector2<Type>::operator/=(value);
z /= value;
return *this;
}
constexpr Vector3& operator-=(const float fl)
constexpr Vector3& operator-=(const Type& value) noexcept
{
Vector2<Type>::operator-=(fl);
z -= fl;
Vector2<Type>::operator-=(value);
z -= value;
return *this;
}
constexpr Vector3& Abs()
constexpr Vector3& abs() noexcept
{
Vector2<Type>::Abs();
Vector2<Type>::abs();
z = z < 0.f ? -z : z;
return *this;
}
[[nodiscard]] constexpr Type DistToSqr(const Vector3& vOther) const
[[nodiscard]] constexpr Type distance_to_sqr(const Vector3& other) const noexcept
{
return (*this - vOther).LengthSqr();
return (*this - other).length_sqr();
}
[[nodiscard]] constexpr Type Dot(const Vector3& vOther) const
[[nodiscard]] constexpr Type dot(const Vector3& other) const noexcept
{
return Vector2<Type>::Dot(vOther) + z * vOther.z;
return Vector2<Type>::dot(other) + z * other.z;
}
#ifndef _MSC_VER
[[nodiscard]] constexpr Type Length() const
[[nodiscard]] constexpr Type length() const
{
return std::hypot(this->x, this->y, z);
}
[[nodiscard]] constexpr Type Length2D() const
[[nodiscard]] constexpr Type length_2d() const
{
return Vector2<Type>::Length();
return Vector2<Type>::length();
}
[[nodiscard]] Type DistTo(const Vector3& vOther) const
[[nodiscard]] Type distance_to(const Vector3& other) const
{
return (*this - vOther).Length();
return (*this - other).length();
}
[[nodiscard]] constexpr Vector3 Normalized() const
[[nodiscard]] constexpr Vector3 normalized() const
{
const Type length = this->Length();
const Type length_value = this->length();
return length != 0 ? *this / length : *this;
return length_value != 0 ? *this / length_value : *this;
}
#else
[[nodiscard]] Type Length() const
[[nodiscard]] Type length() const noexcept
{
return std::hypot(this->x, this->y, z);
}
[[nodiscard]] Vector3 Normalized() const
[[nodiscard]] Vector3 normalized() const noexcept
{
const Type length = this->Length();
const Type len = this->length();
return length != 0 ? *this / length : *this;
return len != static_cast<Type>(0) ? *this / len : *this;
}
[[nodiscard]] Type Length2D() const
[[nodiscard]] Type length_2d() const noexcept
{
return Vector2<Type>::Length();
return Vector2<Type>::length();
}
[[nodiscard]] Type DistTo(const Vector3& vOther) const
[[nodiscard]] Type distance_to(const Vector3& vOther) const noexcept
{
return (*this - vOther).Length();
return (*this - vOther).length();
}
#endif
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const noexcept
{
return Vector2<Type>::LengthSqr() + z * z;
return Vector2<Type>::length_sqr() + z * z;
}
[[nodiscard]] constexpr Vector3 operator-() const
[[nodiscard]] constexpr Vector3 operator-() const noexcept
{
return {-this->x, -this->y, -z};
}
[[nodiscard]] constexpr Vector3 operator+(const Vector3& v) const
[[nodiscard]] constexpr Vector3 operator+(const Vector3& other) const noexcept
{
return {this->x + v.x, this->y + v.y, z + v.z};
return {this->x + other.x, this->y + other.y, z + other.z};
}
[[nodiscard]] constexpr Vector3 operator-(const Vector3& v) const
[[nodiscard]] constexpr Vector3 operator-(const Vector3& other) const noexcept
{
return {this->x - v.x, this->y - v.y, z - v.z};
return {this->x - other.x, this->y - other.y, z - other.z};
}
[[nodiscard]] constexpr Vector3 operator*(const float fl) const
[[nodiscard]] constexpr Vector3 operator*(const Type& value) const noexcept
{
return {this->x * fl, this->y * fl, z * fl};
return {this->x * value, this->y * value, z * value};
}
[[nodiscard]] constexpr Vector3 operator*(const Vector3& v) const
[[nodiscard]] constexpr Vector3 operator*(const Vector3& other) const noexcept
{
return {this->x * v.x, this->y * v.y, z * v.z};
return {this->x * other.x, this->y * other.y, z * other.z};
}
[[nodiscard]] constexpr Vector3 operator/(const float fl) const
[[nodiscard]] constexpr Vector3 operator/(const Type& value) const noexcept
{
return {this->x / fl, this->y / fl, z / fl};
return {this->x / value, this->y / value, z / value};
}
[[nodiscard]] constexpr Vector3 operator/(const Vector3& v) const
[[nodiscard]] constexpr Vector3 operator/(const Vector3& other) const noexcept
{
return {this->x / v.x, this->y / v.y, z / v.z};
return {this->x / other.x, this->y / other.y, z / other.z};
}
[[nodiscard]] constexpr Vector3 Cross(const Vector3 &v) const
[[nodiscard]] constexpr Vector3 cross(const Vector3& other) const noexcept
{
return
{
this->y * v.z - z * v.y,
z * v.x - this->x * v.z,
this->x * v.y - this->y * v.x
};
return {this->y * other.z - z * other.y, z * other.x - this->x * other.z,
this->x * other.y - this->y * other.x};
}
[[nodiscard]] constexpr Type Sum() const
[[nodiscard]] constexpr Type sum() const noexcept
{
return Sum2D() + z;
return sum_2d() + z;
}
[[nodiscard]] std::expected<Angle<float, 0.f, 180.f, AngleFlags::Clamped>, Vector3Error>
AngleBetween(const Vector3& other) const
angle_between(const Vector3& other) const noexcept
{
const auto bottom = Length() * other.Length();
const auto bottom = length() * other.length();
if (bottom == 0.f)
if (bottom == static_cast<Type>(0))
return std::unexpected(Vector3Error::IMPOSSIBLE_BETWEEN_ANGLE);
return Angle<float, 0.f, 180.f, AngleFlags::Clamped>::FromRadians(std::acos(Dot(other) / bottom));
return Angle<float, 0.f, 180.f, AngleFlags::Clamped>::from_radians(std::acos(dot(other) / bottom));
}
[[nodiscard]] bool IsPerpendicular(const Vector3& other) const
[[nodiscard]] bool is_perpendicular(const Vector3& other) const noexcept
{
if (const auto angle = AngleBetween(other))
return angle->AsDegrees() == 90.f;
if (const auto angle = angle_between(other))
return angle->as_degrees() == static_cast<Type>(90);
return false;
}
[[nodiscard]] constexpr Type Sum2D() const
[[nodiscard]] constexpr Type sum_2d() const noexcept
{
return Vector2<Type>::Sum();
return Vector2<Type>::sum();
}
[[nodiscard]] constexpr std::tuple<Type, Type, Type> AsTuple() const
[[nodiscard]] constexpr std::tuple<Type, Type, Type> as_tuple() const noexcept
{
return std::make_tuple(this->x, this->y, z);
}
[[nodiscard]] Vector3 ViewAngleTo(const Vector3 &other) const
[[nodiscard]] Vector3 view_angle_to(const Vector3& other) const noexcept
{
const float distance = DistTo(other);
const auto distance = distance_to(other);
const auto delta = other - *this;
return
{
angles::RadiansToDegrees(std::asin(delta.z / distance)),
angles::RadiansToDegrees(std::atan2(delta.y, delta.x)),
0
};
return {angles::radians_to_degrees(std::asin(delta.z / distance)),
angles::radians_to_degrees(std::atan2(delta.y, delta.x)), 0};
}
};
}
} // namespace omath
// ReSharper disable once CppRedundantNamespaceDefinition
namespace std
{
template<>
struct hash<omath::Vector3<float>>
template<> struct hash<omath::Vector3<float>>
{
std::size_t operator()(const omath::Vector3<float>& vec) const noexcept
{
std::size_t hash = 0;
constexpr std::hash<float> hasher;
hash ^= hasher(vec.x) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.y) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.z) + 0x9e3779b9 + (hash<<6) + (hash>>2);
hash ^= hasher(vec.x) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
hash ^= hasher(vec.y) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
hash ^= hasher(vec.z) + 0x9e3779b9 + (hash << 6) + (hash >> 2);
return hash;
}
};
}
} // namespace std

View File

@@ -6,100 +6,102 @@
#include <algorithm>
#include <omath/vector3.hpp>
namespace omath
{
template <class Type>
template<class Type>
requires std::is_arithmetic_v<Type>
class Vector4 : public Vector3<Type>
{
public:
Type w;
constexpr Vector4(const Type& x, const Type& y, const Type& z, const Type& w) : Vector3<Type>(x, y, z), w(w) {}
constexpr Vector4() : Vector3<Type>(), w(0) {};
constexpr Vector4(const Type& x, const Type& y, const Type& z, const Type& w): Vector3<Type>(x, y, z), w(w)
{
}
constexpr Vector4() noexcept: Vector3<Type>(), w(static_cast<Type>(0)) {};
[[nodiscard]]
constexpr bool operator==(const Vector4& src) const
constexpr bool operator==(const Vector4& other) const noexcept
{
return Vector3<Type>::operator==(src) && w == src.w;
return Vector3<Type>::operator==(other) && w == other.w;
}
[[nodiscard]]
constexpr bool operator!=(const Vector4& src) const
constexpr bool operator!=(const Vector4& other) const noexcept
{
return !(*this == src);
return !(*this == other);
}
constexpr Vector4& operator+=(const Vector4& v)
constexpr Vector4& operator+=(const Vector4& other) noexcept
{
Vector3<Type>::operator+=(v);
w += v.w;
Vector3<Type>::operator+=(other);
w += other.w;
return *this;
}
constexpr Vector4& operator-=(const Vector4& v)
constexpr Vector4& operator-=(const Vector4& other) noexcept
{
Vector3<Type>::operator-=(v);
w -= v.w;
Vector3<Type>::operator-=(other);
w -= other.w;
return *this;
}
constexpr Vector4& operator*=(const float scalar)
constexpr Vector4& operator*=(const Type& value) noexcept
{
Vector3<Type>::operator*=(scalar);
w *= scalar;
Vector3<Type>::operator*=(value);
w *= value;
return *this;
}
constexpr Vector4& operator*=(const Vector4& v)
constexpr Vector4& operator*=(const Vector4& other) noexcept
{
Vector3<Type>::operator*=(v);
w *= v.w;
Vector3<Type>::operator*=(other);
w *= other.w;
return *this;
}
constexpr Vector4& operator/=(const float scalar)
constexpr Vector4& operator/=(const Type& value) noexcept
{
Vector3<Type>::operator/=(scalar);
w /= scalar;
Vector3<Type>::operator/=(value);
w /= value;
return *this;
}
constexpr Vector4& operator/=(const Vector4& v)
constexpr Vector4& operator/=(const Vector4& other) noexcept
{
Vector3<Type>::operator/=(v);
w /= v.w;
Vector3<Type>::operator/=(other);
w /= other.w;
return *this;
}
[[nodiscard]] constexpr Type LengthSqr() const
[[nodiscard]] constexpr Type length_sqr() const noexcept
{
return Vector3<Type>::LengthSqr() + w * w;
return Vector3<Type>::length_sqr() + w * w;
}
[[nodiscard]] constexpr Type Dot(const Vector4& vOther) const
[[nodiscard]] constexpr Type dot(const Vector4& other) const noexcept
{
return Vector3<Type>::Dot(vOther) + w * vOther.w;
return Vector3<Type>::dot(other) + w * other.w;
}
[[nodiscard]] Vector3<Type> Length() const
[[nodiscard]] Vector3<Type> length() const noexcept
{
return std::sqrt(LengthSqr());
return std::sqrt(length_sqr());
}
constexpr Vector4& Abs()
constexpr Vector4& abs() noexcept
{
Vector3<Type>::Abs();
Vector3<Type>::abs();
w = w < 0.f ? -w : w;
return *this;
}
constexpr Vector4& Clamp(const Type& min, const Type& max)
constexpr Vector4& clamp(const Type& min, const Type& max) noexcept
{
this->x = std::clamp(this->x, min, max);
this->y = std::clamp(this->y, min, max);
@@ -109,65 +111,70 @@ namespace omath
}
[[nodiscard]]
constexpr Vector4 operator-() const
constexpr Vector4 operator-() const noexcept
{
return {-this->x, -this->y, -this->z, -w};
}
[[nodiscard]]
constexpr Vector4 operator+(const Vector4& v) const
constexpr Vector4 operator+(const Vector4& other) const noexcept
{
return {this->x + v.x, this->y + v.y, this->z + v.z, w + v.w};
return {this->x + other.x, this->y + other.y, this->z + other.z, w + other.w};
}
[[nodiscard]]
constexpr Vector4 operator-(const Vector4& v) const
constexpr Vector4 operator-(const Vector4& other) const noexcept
{
return {this->x - v.x, this->y - v.y, this->z - v.z, w - v.w};
return {this->x - other.x, this->y - other.y, this->z - other.z, w - other.w};
}
[[nodiscard]]
constexpr Vector4 operator*(const Type& scalar) const
constexpr Vector4 operator*(const Type& value) const noexcept
{
return {this->x * scalar, this->y * scalar, this->z * scalar, w * scalar};
return {this->x * value, this->y * value, this->z * value, w * value};
}
[[nodiscard]]
constexpr Vector4 operator*(const Vector4& v) const
constexpr Vector4 operator*(const Vector4& other) const noexcept
{
return {this->x * v.x, this->y * v.y, this->z * v.z, w * v.w};
return {this->x * other.x, this->y * other.y, this->z * other.z, w * other.w};
}
[[nodiscard]]
constexpr Vector4 operator/(const Type& scalar) const
constexpr Vector4 operator/(const Type& value) const noexcept
{
return {this->x / scalar, this->y / scalar, this->z / scalar, w / scalar};
return {this->x / value, this->y / value, this->z / value, w / value};
}
[[nodiscard]]
constexpr Vector4 operator/(const Vector4& v) const
constexpr Vector4 operator/(const Vector4& other) const noexcept
{
return {this->x / v.x, this->y / v.y, this->z / v.z, w / v.w};
return {this->x / other.x, this->y / other.y, this->z / other.z, w / other.w};
}
[[nodiscard]]
constexpr Type Sum() const
constexpr Type sum() const noexcept
{
return Vector3<Type>::Sum() + w;
return Vector3<Type>::sum() + w;
}
#ifdef OMATH_IMGUI_INTEGRATION
[[nodiscard]]
ImVec4 ToImVec4() const
ImVec4 to_im_vec4() const noexcept
{
return
{
static_cast<float>(this->x),
static_cast<float>(this->y),
static_cast<float>(this->z),
static_cast<float>(w),
return {
static_cast<float>(this->x),
static_cast<float>(this->y),
static_cast<float>(this->z),
static_cast<float>(w),
};
}
[[nodiscard]]
static Vector4<float> from_im_vec4(const ImVec4& other) noexcept
{
return {static_cast<Type>(other.x), static_cast<Type>(other.y), static_cast<Type>(other.z)};
}
}
#endif
};
}
};
} // namespace omath

View File

@@ -12,4 +12,4 @@ namespace omath
YawType yaw;
RollType roll;
};
}
} // namespace omath

View File

@@ -0,0 +1,54 @@
//
// Created by Vlad on 4/18/2025.
//
#include "omath/3d_primitives/box.hpp"
namespace omath::primitives
{
std::array<Triangle<Vector3<float>>, 12> create_box(const Vector3<float>& top, const Vector3<float>& bottom,
const Vector3<float>& dir_forward,
const Vector3<float>& dir_right, const float ratio) noexcept
{
const auto height = top.distance_to(bottom);
const auto side_size = height / ratio;
// corner layout (03 bottom, 47 top)
std::array<Vector3<float>, 8> p;
p[0] = bottom + (dir_forward + dir_right) * side_size; // frontrightbottom
p[1] = bottom + (dir_forward - dir_right) * side_size; // frontleftbottom
p[2] = bottom + (-dir_forward + dir_right) * side_size; // backrightbottom
p[3] = bottom + (-dir_forward - dir_right) * side_size; // backleftbottom
p[4] = top + (dir_forward + dir_right) * side_size; // frontrighttop
p[5] = top + (dir_forward - dir_right) * side_size; // frontlefttop
p[6] = top + (-dir_forward + dir_right) * side_size; // backrighttop
p[7] = top + (-dir_forward - dir_right) * side_size; // backlefttop
std::array<Triangle<Vector3<float>>, 12> poly;
// bottom face (+Y up ⇒ wind CW when viewed from above)
poly[0] = {p[0], p[2], p[3]};
poly[1] = {p[0], p[3], p[1]};
// top face
poly[2] = {p[4], p[7], p[6]};
poly[3] = {p[4], p[5], p[7]};
// front face
poly[4] = {p[0], p[5], p[1]};
poly[5] = {p[0], p[4], p[5]};
// right face
poly[6] = {p[0], p[6], p[2]};
poly[7] = {p[0], p[4], p[6]};
// back face
poly[8] = {p[2], p[7], p[3]};
poly[9] = {p[2], p[6], p[7]};
// left face
poly[10] = {p[1], p[7], p[5]};
poly[11] = {p[1], p[3], p[7]};
return poly;
}
} // namespace omath::primitives

View File

@@ -1,10 +0,0 @@
target_sources(omath PRIVATE
matrix.cpp
color.cpp
)
add_subdirectory(projectile_prediction)
add_subdirectory(pathfinding)
add_subdirectory(projection)
add_subdirectory(collision)
add_subdirectory(engines)

View File

@@ -1,3 +0,0 @@
target_sources(omath PRIVATE
line_tracer.cpp
)

View File

@@ -5,58 +5,59 @@
namespace omath::collision
{
bool LineTracer::CanTraceLine(const Ray& ray, const Triangle<Vector3<float>>& triangle)
bool LineTracer::can_trace_line(const Ray& ray, const Triangle<Vector3<float>>& triangle) noexcept
{
return GetRayHitPoint(ray, triangle) == ray.end;
return get_ray_hit_point(ray, triangle) == ray.end;
}
Vector3<float> Ray::DirectionVector() const
Vector3<float> Ray::direction_vector() const noexcept
{
return end - start;
}
Vector3<float> Ray::DirectionVectorNormalized() const
Vector3<float> Ray::direction_vector_normalized() const noexcept
{
return DirectionVector().Normalized();
return direction_vector().normalized();
}
Vector3<float> LineTracer::GetRayHitPoint(const Ray& ray, const Triangle<Vector3<float>>& triangle)
Vector3<float> LineTracer::get_ray_hit_point(const Ray& ray, const Triangle<Vector3<float>>& triangle) noexcept
{
constexpr float kEpsilon = std::numeric_limits<float>::epsilon();
constexpr float k_epsilon = std::numeric_limits<float>::epsilon();
const auto sideA = triangle.SideAVector();
const auto sideB = triangle.SideBVector();
const auto side_a = triangle.side_a_vector();
const auto side_b = triangle.side_b_vector();
const auto ray_dir = ray.direction_vector();
const auto rayDir = ray.DirectionVector();
const auto p = ray_dir.cross(side_b);
const auto det = side_a.dot(p);
const auto p = rayDir.Cross(sideB);
const auto det = sideA.Dot(p);
if (std::abs(det) < kEpsilon)
if (std::abs(det) < k_epsilon)
return ray.end;
const auto invDet = 1.0f / det;
const auto inv_det = 1.0f / det;
const auto t = ray.start - triangle.m_vertex2;
const auto u = t.Dot(p) * invDet;
const auto u = t.dot(p) * inv_det;
if ((u < 0 && std::abs(u) > kEpsilon) || (u > 1 && std::abs(u - 1) > kEpsilon))
if ((u < 0 && std::abs(u) > k_epsilon) || (u > 1 && std::abs(u - 1) > k_epsilon))
return ray.end;
const auto q = t.Cross(sideA);
const auto v = rayDir.Dot(q) * invDet;
const auto q = t.cross(side_a);
// ReSharper disable once CppTooWideScopeInitStatement
const auto v = ray_dir.dot(q) * inv_det;
if ((v < 0 && std::abs(v) > kEpsilon) || (u + v > 1 && std::abs(u + v - 1) > kEpsilon))
if ((v < 0 && std::abs(v) > k_epsilon) || (u + v > 1 && std::abs(u + v - 1) > k_epsilon))
return ray.end;
const auto tHit = sideB.Dot(q) * invDet;
const auto t_hit = side_b.dot(q) * inv_det;
if (tHit <= kEpsilon)
if (ray.infinite_length)
{
if (t_hit <= k_epsilon)
return ray.end;
}
else if (t_hit <= k_epsilon || t_hit > 1.0f - k_epsilon)
return ray.end;
return ray.start + rayDir * tHit;
return ray.start + ray_dir * t_hit;
}
} // namespace omath::collision

View File

@@ -1,13 +0,0 @@
//
// Created by vlad on 2/4/24.
//
#include "omath/color.hpp"
#include <algorithm>
#include <cmath>
namespace omath
{
}

View File

@@ -1,4 +0,0 @@
add_subdirectory(source_engine)
add_subdirectory(opengl_engine)
add_subdirectory(iw_engine)
add_subdirectory(unity_engine)

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -7,28 +7,27 @@
namespace omath::iw_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const noexcept
{
return iw_engine::CalcViewMatrix(m_viewAngles, m_origin);
return iw_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const noexcept
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::openg
} // namespace omath::iw_engine

View File

@@ -3,50 +3,49 @@
//
#include "omath/engines/iw_engine/formulas.hpp"
namespace omath::iw_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept
{
return MatRotationAxisZ(angles.yaw) * MatRotationAxisY(angles.pitch) * MatRotationAxisX(angles.roll);
return mat_rotation_axis_z(angles.yaw) * mat_rotation_axis_y(angles.pitch) * mat_rotation_axis_x(angles.roll);
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept
{
return MatCameraView(ForwardVector(angles), RightVector(angles), UpVector(angles), cam_origin);
return mat_camera_view(forward_vector(angles), right_vector(angles), up_vector(angles), cam_origin);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far) noexcept
{
// NOTE: Need magic number to fix fov calculation, since IW engine inherit Quake proj matrix calculation
constexpr auto kMultiplyFactor = 0.75f;
constexpr auto k_multiply_factor = 0.75f;
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f) * kMultiplyFactor;
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f) * k_multiply_factor;
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, 1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -4,32 +4,30 @@
#include "omath/engines/opengl_engine/camera.hpp"
#include "omath/engines/opengl_engine/formulas.hpp"
namespace omath::opengl_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const Angle<float, 0.f, 180.f, AngleFlags::Clamped>& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const noexcept
{
return opengl_engine::CalcViewMatrix(m_viewAngles, m_origin);
return opengl_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const noexcept
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::opengl
} // namespace omath::opengl_engine

View File

@@ -3,47 +3,48 @@
//
#include "omath/engines/opengl_engine/formulas.hpp"
namespace omath::opengl_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsForward);
const auto vec
= rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsRight);
const auto vec
= rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector<float, MatStoreType::COLUMN_MAJOR>(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector<float, MatStoreType::COLUMN_MAJOR>(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept
{
return MatCameraView<float, MatStoreType::COLUMN_MAJOR>(-ForwardVector(angles), RightVector(angles),
UpVector(angles), cam_origin);
return mat_camera_view<float, MatStoreType::COLUMN_MAJOR>(-forward_vector(angles), right_vector(angles),
up_vector(angles), cam_origin);
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept
{
return MatRotationAxisZ<float, MatStoreType::COLUMN_MAJOR>(angles.roll) *
MatRotationAxisY<float, MatStoreType::COLUMN_MAJOR>(-angles.yaw) *
MatRotationAxisX<float, MatStoreType::COLUMN_MAJOR>(-angles.pitch);
return mat_rotation_axis_x<float, MatStoreType::COLUMN_MAJOR>(-angles.pitch)
* mat_rotation_axis_y<float, MatStoreType::COLUMN_MAJOR>(-angles.yaw)
* mat_rotation_axis_z<float, MatStoreType::COLUMN_MAJOR>(angles.roll);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, -(far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, -1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp formulas.cpp)

View File

@@ -4,34 +4,32 @@
#include "omath/engines/source_engine/camera.hpp"
#include "omath/engines/source_engine/formulas.hpp"
namespace omath::source_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const projection::FieldOfView& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const projection::FieldOfView& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt(const Vector3<float>& target)
void Camera::look_at(const Vector3<float>& target)
{
const float distance = m_origin.DistTo(target);
const float distance = m_origin.distance_to(target);
const auto delta = target - m_origin;
m_viewAngles.pitch = PitchAngle::FromRadians(std::asin(delta.z / distance));
m_viewAngles.yaw = -YawAngle::FromRadians(std::atan2(delta.y, delta.x));
m_viewAngles.roll = RollAngle::FromRadians(0.f);
m_view_angles.pitch = PitchAngle::from_radians(std::asin(delta.z / distance));
m_view_angles.yaw = -YawAngle::from_radians(std::atan2(delta.y, delta.x));
m_view_angles.roll = RollAngle::from_radians(0.f);
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const noexcept
{
return source_engine::CalcViewMatrix(m_viewAngles, m_origin);
return source_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const noexcept
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::source
} // namespace omath::source_engine

View File

@@ -3,50 +3,49 @@
//
#include <omath/engines/source_engine/formulas.hpp>
namespace omath::source_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept
{
return MatRotationAxisZ(angles.yaw) * MatRotationAxisY(angles.pitch) * MatRotationAxisX(angles.roll);
return mat_rotation_axis_z(angles.yaw) * mat_rotation_axis_y(angles.pitch) * mat_rotation_axis_x(angles.roll);
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept
{
return MatCameraView(ForwardVector(angles), RightVector(angles), UpVector(angles), cam_origin);
return mat_camera_view(forward_vector(angles), right_vector(angles), up_vector(angles), cam_origin);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far) noexcept
{
// NOTE: Need magic number to fix fov calculation, since source inherit Quake proj matrix calculation
constexpr auto kMultiplyFactor = 0.75f;
constexpr auto k_multiply_factor = 0.75f;
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f) * kMultiplyFactor;
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f) * k_multiply_factor;
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, 1, 0},
};

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE formulas.cpp camera.cpp)

View File

@@ -4,25 +4,24 @@
#include <omath/engines/unity_engine/camera.hpp>
#include <omath/engines/unity_engine/formulas.hpp>
namespace omath::unity_engine
{
Camera::Camera(const Vector3<float>& position, const ViewAngles& viewAngles, const projection::ViewPort& viewPort,
const projection::FieldOfView& fov, const float near, const float far) :
projection::Camera<Mat4x4, ViewAngles>(position, viewAngles, viewPort, fov, near, far)
Camera::Camera(const Vector3<float>& position, const ViewAngles& view_angles, const projection::ViewPort& view_port,
const projection::FieldOfView& fov, const float near, const float far)
: projection::Camera<Mat4X4, ViewAngles>(position, view_angles, view_port, fov, near, far)
{
}
void Camera::LookAt([[maybe_unused]] const Vector3<float>& target)
void Camera::look_at([[maybe_unused]] const Vector3<float>& target)
{
throw std::runtime_error("Not implemented");
}
Mat4x4 Camera::CalcViewMatrix() const
Mat4X4 Camera::calc_view_matrix() const noexcept
{
return unity_engine::CalcViewMatrix(m_viewAngles, m_origin);
return unity_engine::calc_view_matrix(m_view_angles, m_origin);
}
Mat4x4 Camera::CalcProjectionMatrix() const
Mat4X4 Camera::calc_projection_matrix() const noexcept
{
return CalcPerspectiveProjectionMatrix(m_fieldOfView.AsDegrees(), m_viewPort.AspectRatio(), m_nearPlaneDistance,
m_farPlaneDistance);
return calc_perspective_projection_matrix(m_field_of_view.as_degrees(), m_view_port.aspect_ratio(),
m_near_plane_distance, m_far_plane_distance);
}
} // namespace omath::unity_engine

View File

@@ -3,47 +3,45 @@
//
#include "omath/engines/unity_engine/formulas.hpp"
namespace omath::unity_engine
{
Vector3<float> ForwardVector(const ViewAngles& angles)
Vector3<float> forward_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsForward);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_forward);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> RightVector(const ViewAngles& angles)
Vector3<float> right_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsRight);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_right);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Vector3<float> UpVector(const ViewAngles& angles)
Vector3<float> up_vector(const ViewAngles& angles) noexcept
{
const auto vec = RotationMatrix(angles) * MatColumnFromVector(kAbsUp);
const auto vec = rotation_matrix(angles) * mat_column_from_vector(k_abs_up);
return {vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)};
return {vec.at(0, 0), vec.at(1, 0), vec.at(2, 0)};
}
Mat4x4 CalcViewMatrix(const ViewAngles& angles, const Vector3<float>& cam_origin)
Mat4X4 calc_view_matrix(const ViewAngles& angles, const Vector3<float>& cam_origin) noexcept
{
return MatCameraView<float, MatStoreType::ROW_MAJOR>(ForwardVector(angles), -RightVector(angles),
UpVector(angles), cam_origin);
return mat_camera_view<float, MatStoreType::ROW_MAJOR>(forward_vector(angles), -right_vector(angles),
up_vector(angles), cam_origin);
}
Mat4x4 RotationMatrix(const ViewAngles& angles)
Mat4X4 rotation_matrix(const ViewAngles& angles) noexcept
{
return MatRotationAxisZ(angles.roll) *
MatRotationAxisY(angles.yaw) *
MatRotationAxisX(angles.pitch);
return mat_rotation_axis_x<float, MatStoreType::ROW_MAJOR>(angles.pitch)
* mat_rotation_axis_y<float, MatStoreType::ROW_MAJOR>(angles.yaw)
* mat_rotation_axis_z<float, MatStoreType::ROW_MAJOR>(angles.roll);
}
Mat4x4 CalcPerspectiveProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near,
const float far)
Mat4X4 calc_perspective_projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far) noexcept
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {
{1.f / (aspectRatio * fovHalfTan), 0, 0, 0},
{0, 1.f / (fovHalfTan), 0, 0},
{1.f / (aspect_ratio * fov_half_tan), 0, 0, 0},
{0, 1.f / (fov_half_tan), 0, 0},
{0, 0, (far + near) / (far - near), -(2.f * far * near) / (far - near)},
{0, 0, -1.f, 0},
};

View File

@@ -1,14 +1,13 @@
#ifdef OMATH_ENABLE_LEGACY
#include "omath/matrix.hpp"
#include "omath/angles.hpp"
#include "omath/vector3.hpp"
#include <complex>
#include <format>
#include <stdexcept>
#include <utility>
namespace omath
{
Matrix::Matrix(const size_t rows, const size_t columns)
@@ -21,7 +20,7 @@ namespace omath
m_data = std::make_unique<float[]>(m_rows * m_columns);
Set(0.f);
set(0.f);
}
Matrix::Matrix(const std::initializer_list<std::initializer_list<float>>& rows)
@@ -29,7 +28,6 @@ namespace omath
m_rows = rows.size();
m_columns = rows.begin()->size();
for (const auto& row: rows)
if (row.size() != m_columns)
throw std::invalid_argument("All rows must have the same number of columns.");
@@ -41,7 +39,7 @@ namespace omath
{
size_t j = 0;
for (const auto& value: row)
At(i, j++) = value;
at(i, j++) = value;
++i;
}
}
@@ -55,29 +53,28 @@ namespace omath
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
at(i, j) = other.at(i, j);
}
Matrix::Matrix(const size_t rows, const size_t columns, const float* pRaw)
Matrix::Matrix(const size_t rows, const size_t columns, const float* raw_data)
{
m_rows = rows;
m_columns = columns;
m_data = std::make_unique<float[]>(m_rows * m_columns);
for (size_t i = 0; i < rows * columns; ++i)
At(i / rows, i % columns) = pRaw[i];
at(i / rows, i % columns) = raw_data[i];
}
size_t Matrix::RowCount() const noexcept
size_t Matrix::row_count() const noexcept
{
return m_rows;
}
float& Matrix::operator[](const size_t row, const size_t column)
{
return At(row, column);
return at(row, column);
}
Matrix::Matrix(Matrix&& other) noexcept
@@ -92,35 +89,35 @@ namespace omath
other.m_data = nullptr;
}
size_t Matrix::ColumnsCount() const noexcept
size_t Matrix::columns_count() const noexcept
{
return m_columns;
}
std::pair<size_t, size_t> Matrix::Size() const noexcept
std::pair<size_t, size_t> Matrix::size() const noexcept
{
return {RowCount(), ColumnsCount()};
return {row_count(), columns_count()};
}
float& Matrix::At(const size_t iRow, const size_t iCol)
float& Matrix::at(const size_t row, const size_t col)
{
return const_cast<float&>(std::as_const(*this).At(iRow, iCol));
return const_cast<float&>(std::as_const(*this).at(row, col));
}
float Matrix::Sum()
float Matrix::sum()
{
float sum = 0;
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
sum += At(i, j);
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
sum += at(i, j);
return sum;
}
const float& Matrix::At(const size_t iRow, const size_t iCol) const
const float& Matrix::at(const size_t row, const size_t col) const
{
return m_data[iRow * m_columns + iCol];
return m_data[row * m_columns + col];
}
Matrix Matrix::operator*(const Matrix& other) const
@@ -128,15 +125,14 @@ namespace omath
if (m_columns != other.m_rows)
throw std::runtime_error("n != m");
auto outMat = Matrix(m_rows, other.m_columns);
auto out_mat = Matrix(m_rows, other.m_columns);
for (size_t d = 0; d < m_rows; ++d)
for (size_t i = 0; i < other.m_columns; ++i)
for (size_t j = 0; j < other.m_rows; ++j)
outMat.At(d, i) += At(d, j) * other.At(j, i);
out_mat.at(d, i) += at(d, j) * other.at(j, i);
return outMat;
return out_mat;
}
Matrix& Matrix::operator*=(const Matrix& other)
@@ -150,22 +146,22 @@ namespace omath
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) *= f;
out.at(i, j) *= f;
return out;
}
Matrix& Matrix::operator*=(const float f)
{
for (size_t i = 0; i < RowCount(); i++)
for (size_t j = 0; j < ColumnsCount(); j++)
At(i, j) *= f;
for (size_t i = 0; i < row_count(); i++)
for (size_t j = 0; j < columns_count(); j++)
at(i, j) *= f;
return *this;
}
void Matrix::Clear()
void Matrix::clear()
{
Set(0.f);
set(0.f);
}
Matrix& Matrix::operator=(const Matrix& other)
@@ -175,7 +171,7 @@ namespace omath
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = other.At(i, j);
at(i, j) = other.at(i, j);
return *this;
}
@@ -199,7 +195,7 @@ namespace omath
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) /= f;
at(i, j) /= f;
return *this;
}
@@ -209,12 +205,12 @@ namespace omath
auto out = *this;
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
out.At(i, j) /= f;
out.at(i, j) /= f;
return out;
}
std::string Matrix::ToString() const
std::string Matrix::to_string() const
{
std::string str;
@@ -222,7 +218,7 @@ namespace omath
{
for (size_t j = 0; j < m_columns; ++j)
{
str += std::format("{:.1f}", At(i, j));
str += std::format("{:.1f}", at(i, j));
if (j == m_columns - 1)
str += '\n';
@@ -233,89 +229,89 @@ namespace omath
return str;
}
float Matrix::Determinant() const
float Matrix::determinant() const // NOLINT(*-no-recursion)
{
if (m_rows + m_columns == 2)
return At(0, 0);
return at(0, 0);
if (m_rows == 2 and m_columns == 2)
return At(0, 0) * At(1, 1) - At(0, 1) * At(1, 0);
return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
float fDet = 0;
float det = 0;
for (size_t i = 0; i < m_columns; i++)
fDet += AlgComplement(0, i) * At(0, i);
det += alg_complement(0, i) * at(0, i);
return fDet;
return det;
}
float Matrix::AlgComplement(const size_t i, const size_t j) const
float Matrix::alg_complement(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
const auto tmp = Minor(i, j);
const auto tmp = minor(i, j);
return ((i + j + 2) % 2 == 0) ? tmp : -tmp;
}
Matrix Matrix::Transpose() const
Matrix Matrix::transpose() const
{
Matrix transposed = {m_columns, m_rows};
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
transposed.At(j, i) = At(i, j);
transposed.at(j, i) = at(i, j);
return transposed;
}
Matrix::~Matrix() = default;
void Matrix::Set(const float val)
void Matrix::set(const float val)
{
for (size_t i = 0; i < m_rows; ++i)
for (size_t j = 0; j < m_columns; ++j)
At(i, j) = val;
at(i, j) = val;
}
Matrix Matrix::Strip(const size_t row, const size_t column) const
Matrix Matrix::strip(const size_t row, const size_t column) const
{
Matrix stripped = {m_rows - 1, m_columns - 1};
size_t iStripRowIndex = 0;
size_t strip_row_index = 0;
for (size_t i = 0; i < m_rows; i++)
{
if (i == row)
continue;
size_t iStripColumnIndex = 0;
size_t strip_column_index = 0;
for (size_t j = 0; j < m_columns; ++j)
{
if (j == column)
continue;
stripped.At(iStripRowIndex, iStripColumnIndex) = At(i, j);
iStripColumnIndex++;
stripped.at(strip_row_index, strip_column_index) = at(i, j);
strip_column_index++;
}
iStripRowIndex++;
strip_row_index++;
}
return stripped;
}
float Matrix::Minor(const size_t i, const size_t j) const
float Matrix::minor(const size_t i, const size_t j) const // NOLINT(*-no-recursion)
{
return Strip(i, j).Determinant();
return strip(i, j).determinant();
}
Matrix Matrix::ToScreenMatrix(const float screenWidth, const float screenHeight)
Matrix Matrix::to_screen_matrix(const float screen_width, const float screen_height)
{
return {
{screenWidth / 2.f, 0.f, 0.f, 0.f},
{0.f, -screenHeight / 2.f, 0.f, 0.f},
{screen_width / 2.f, 0.f, 0.f, 0.f},
{0.f, -screen_height / 2.f, 0.f, 0.f},
{0.f, 0.f, 1.f, 0.f},
{screenWidth / 2.f, screenHeight / 2.f, 0.f, 1.f},
{screen_width / 2.f, screen_height / 2.f, 0.f, 1.f},
};
}
Matrix Matrix::TranslationMatrix(const Vector3<float>& diff)
Matrix Matrix::translation_matrix(const Vector3<float>& diff)
{
return {
{1.f, 0.f, 0.f, 0.f},
@@ -325,7 +321,8 @@ namespace omath
};
}
Matrix Matrix::OrientationMatrix(const Vector3<float>& forward, const Vector3<float>& right, const Vector3<float>& up)
Matrix Matrix::orientation_matrix(const Vector3<float>& forward, const Vector3<float>& right,
const Vector3<float>& up)
{
return {
{right.x, up.x, forward.x, 0.f},
@@ -335,25 +332,26 @@ namespace omath
};
}
Matrix Matrix::ProjectionMatrix(const float fieldOfView, const float aspectRatio, const float near, const float far)
Matrix Matrix::projection_matrix(const float field_of_view, const float aspect_ratio, const float near,
const float far)
{
const float fovHalfTan = std::tan(angles::DegreesToRadians(fieldOfView) / 2.f);
const float fov_half_tan = std::tan(angles::degrees_to_radians(field_of_view) / 2.f);
return {{1.f / (aspectRatio * fovHalfTan), 0.f, 0.f, 0.f},
{0.f, 1.f / fovHalfTan, 0.f, 0.f},
return {{1.f / (aspect_ratio * fov_half_tan), 0.f, 0.f, 0.f},
{0.f, 1.f / fov_half_tan, 0.f, 0.f},
{0.f, 0.f, (far + near) / (far - near), 2.f * near * far / (far - near)},
{0.f, 0.f, -1.f, 0.f}};
}
const float* Matrix::Raw() const
const float* Matrix::raw() const
{
return m_data.get();
}
void Matrix::SetDataFromRaw(const float* pRawMatrix)
void Matrix::set_data_from_raw(const float* raw_matrix)
{
for (size_t i = 0; i < m_columns * m_rows; ++i)
At(i / m_rows, i % m_columns) = pRawMatrix[i];
at(i / m_rows, i % m_columns) = raw_matrix[i];
}
Matrix::Matrix()
@@ -363,3 +361,4 @@ namespace omath
m_data = nullptr;
}
} // namespace omath
#endif

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE navigation_mesh.cpp a_star.cpp)

View File

@@ -2,96 +2,95 @@
// Created by Vlad on 28.07.2024.
//
#include "omath/pathfinding/a_star.hpp"
#include <algorithm>
#include <optional>
#include <unordered_map>
#include <unordered_set>
namespace omath::pathfinding
{
struct PathNode final
{
std::optional<Vector3<float>> cameFrom;
float gCost = 0.f;
std::optional<Vector3<float>> came_from;
float g_cost = 0.f;
};
std::vector<Vector3<float>> Astar::ReconstructFinalPath(const std::unordered_map<Vector3<float>, PathNode>& closedList,
const Vector3<float>& current)
std::vector<Vector3<float>>
Astar::reconstruct_final_path(const std::unordered_map<Vector3<float>, PathNode>& closed_list,
const Vector3<float>& current) noexcept
{
std::vector<Vector3<float>> path;
std::optional currentOpt = current;
std::optional current_opt = current;
while (currentOpt)
while (current_opt)
{
path.push_back(*currentOpt);
path.push_back(*current_opt);
auto it = closedList.find(*currentOpt);
auto it = closed_list.find(*current_opt);
if (it == closedList.end())
if (it == closed_list.end())
break;
currentOpt = it->second.cameFrom;
current_opt = it->second.came_from;
}
std::ranges::reverse(path);
return path;
}
auto Astar::GetPerfectNode(const std::unordered_map<Vector3<float>, PathNode>& openList, const Vector3<float>& endVertex)
auto Astar::get_perfect_node(const std::unordered_map<Vector3<float>, PathNode>& open_list,
const Vector3<float>& end_vertex) noexcept
{
return std::ranges::min_element(openList,
[&endVertex](const auto& a, const auto& b)
return std::ranges::min_element(open_list,
[&end_vertex](const auto& a, const auto& b)
{
const float fA = a.second.gCost + a.first.DistTo(endVertex);
const float fB = b.second.gCost + b.first.DistTo(endVertex);
return fA < fB;
const float fa = a.second.g_cost + a.first.distance_to(end_vertex);
const float fb = b.second.g_cost + b.first.distance_to(end_vertex);
return fa < fb;
});
}
std::vector<Vector3<float>> Astar::FindPath(const Vector3<float>& start, const Vector3<float>& end, const NavigationMesh& navMesh)
std::vector<Vector3<float>> Astar::find_path(const Vector3<float>& start, const Vector3<float>& end,
const NavigationMesh& nav_mesh) noexcept
{
std::unordered_map<Vector3<float>, PathNode> closedList;
std::unordered_map<Vector3<float>, PathNode> openList;
std::unordered_map<Vector3<float>, PathNode> closed_list;
std::unordered_map<Vector3<float>, PathNode> open_list;
auto maybeStartVertex = navMesh.GetClosestVertex(start);
auto maybeEndVertex = navMesh.GetClosestVertex(end);
auto maybe_start_vertex = nav_mesh.get_closest_vertex(start);
auto maybe_end_vertex = nav_mesh.get_closest_vertex(end);
if (!maybeStartVertex || !maybeEndVertex)
if (!maybe_start_vertex || !maybe_end_vertex)
return {};
const auto startVertex = maybeStartVertex.value();
const auto endVertex = maybeEndVertex.value();
const auto start_vertex = maybe_start_vertex.value();
const auto end_vertex = maybe_end_vertex.value();
open_list.emplace(start_vertex, PathNode{std::nullopt, 0.f});
openList.emplace(startVertex, PathNode{std::nullopt, 0.f});
while (!openList.empty())
while (!open_list.empty())
{
auto currentIt = GetPerfectNode(openList, endVertex);
auto current_it = get_perfect_node(open_list, end_vertex);
const auto current = currentIt->first;
const auto currentNode = currentIt->second;
const auto current = current_it->first;
const auto current_node = current_it->second;
if (current == endVertex)
return ReconstructFinalPath(closedList, current);
if (current == end_vertex)
return reconstruct_final_path(closed_list, current);
closed_list.emplace(current, current_node);
open_list.erase(current_it);
closedList.emplace(current, currentNode);
openList.erase(currentIt);
for (const auto& neighbor: navMesh.GetNeighbors(current))
for (const auto& neighbor: nav_mesh.get_neighbors(current))
{
if (closedList.contains(neighbor))
if (closed_list.contains(neighbor))
continue;
const float tentativeGCost = currentNode.gCost + neighbor.DistTo(current);
const float tentative_g_cost = current_node.g_cost + neighbor.distance_to(current);
const auto openIt = openList.find(neighbor);
// ReSharper disable once CppTooWideScopeInitStatement
const auto open_it = open_list.find(neighbor);
if (openIt == openList.end() || tentativeGCost < openIt->second.gCost)
openList[neighbor] = PathNode{current, tentativeGCost};
if (open_it == open_list.end() || tentative_g_cost < open_it->second.g_cost)
open_list[neighbor] = PathNode{current, tentative_g_cost};
}
}

View File

@@ -2,94 +2,90 @@
// Created by Vlad on 28.07.2024.
//
#include "omath/pathfinding/navigation_mesh.hpp"
#include <algorithm>
#include <stdexcept>
namespace omath::pathfinding
{
std::expected<Vector3<float>, std::string> NavigationMesh::GetClosestVertex(const Vector3<float> &point) const
std::expected<Vector3<float>, std::string>
NavigationMesh::get_closest_vertex(const Vector3<float>& point) const noexcept
{
const auto res = std::ranges::min_element(m_verTextMap,
[&point](const auto& a, const auto& b)
{
return a.first.DistTo(point) < b.first.DistTo(point);
});
const auto res = std::ranges::min_element(m_vertex_map, [&point](const auto& a, const auto& b)
{ return a.first.distance_to(point) < b.first.distance_to(point); });
if (res == m_verTextMap.cend())
if (res == m_vertex_map.cend())
return std::unexpected("Failed to get clossest point");
return res->first;
}
const std::vector<Vector3<float>>& NavigationMesh::GetNeighbors(const Vector3<float> &vertex) const
const std::vector<Vector3<float>>& NavigationMesh::get_neighbors(const Vector3<float>& vertex) const noexcept
{
return m_verTextMap.at(vertex);
return m_vertex_map.at(vertex);
}
bool NavigationMesh::Empty() const
bool NavigationMesh::empty() const
{
return m_verTextMap.empty();
return m_vertex_map.empty();
}
std::vector<uint8_t> NavigationMesh::Serialize() const
std::vector<uint8_t> NavigationMesh::serialize() const noexcept
{
auto dumpToVector =[]<typename T>(const T& t, std::vector<uint8_t>& vec){
auto dump_to_vector = []<typename T>(const T& t, std::vector<uint8_t>& vec)
{
for (size_t i = 0; i < sizeof(t); i++)
vec.push_back(*(reinterpret_cast<const uint8_t*>(&t)+i));
vec.push_back(*(reinterpret_cast<const uint8_t*>(&t) + i));
};
std::vector<uint8_t> raw;
for (const auto& [vertex, neighbors] : m_verTextMap)
for (const auto& [vertex, neighbors]: m_vertex_map)
{
const auto neighborsCount = neighbors.size();
const auto neighbors_count = neighbors.size();
dumpToVector(vertex, raw);
dumpToVector(neighborsCount, raw);
dump_to_vector(vertex, raw);
dump_to_vector(neighbors_count, raw);
for (const auto& neighbor : neighbors)
dumpToVector(neighbor, raw);
for (const auto& neighbor: neighbors)
dump_to_vector(neighbor, raw);
}
return raw;
}
void NavigationMesh::Deserialize(const std::vector<uint8_t> &raw)
void NavigationMesh::deserialize(const std::vector<uint8_t>& raw) noexcept
{
auto loadFromVector = [](const std::vector<uint8_t>& vec, size_t& offset, auto& value)
auto load_from_vector = [](const std::vector<uint8_t>& vec, size_t& offset, auto& value)
{
if (offset + sizeof(value) > vec.size())
{
throw std::runtime_error("Deserialize: Invalid input data size.");
}
std::copy_n(vec.data() + offset, sizeof(value), (uint8_t*)&value);
std::copy_n(vec.data() + offset, sizeof(value), reinterpret_cast<uint8_t*>(&value));
offset += sizeof(value);
};
m_verTextMap.clear();
m_vertex_map.clear();
size_t offset = 0;
while (offset < raw.size())
{
Vector3<float> vertex;
loadFromVector(raw, offset, vertex);
load_from_vector(raw, offset, vertex);
uint16_t neighborsCount;
loadFromVector(raw, offset, neighborsCount);
uint16_t neighbors_count;
load_from_vector(raw, offset, neighbors_count);
std::vector<Vector3<float>> neighbors;
neighbors.reserve(neighborsCount);
neighbors.reserve(neighbors_count);
for (size_t i = 0; i < neighborsCount; ++i)
for (size_t i = 0; i < neighbors_count; ++i)
{
Vector3<float> neighbor;
loadFromVector(raw, offset, neighbor);
load_from_vector(raw, offset, neighbor);
neighbors.push_back(neighbor);
}
m_verTextMap.emplace(vertex, std::move(neighbors));
m_vertex_map.emplace(vertex, std::move(neighbors));
}
}
}
} // namespace omath::pathfinding

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE proj_pred_engine_legacy.cpp projectile.cpp target.cpp proj_pred_engine_avx2.cpp proj_pred_engine.cpp)

View File

@@ -1,10 +0,0 @@
//
// Created by Vlad on 2/23/2025.
//
#include "omath/projectile_prediction/proj_pred_engine.hpp"
namespace omath::projectile_prediction
{
} // namespace omath::projectile_prediction

View File

@@ -14,8 +14,8 @@
namespace omath::projectile_prediction
{
std::optional<Vector3<float>>
ProjPredEngineAVX2::MaybeCalculateAimPoint([[maybe_unused]] const Projectile& projectile,
[[maybe_unused]] const Target& target) const
ProjPredEngineAvx2::maybe_calculate_aim_point([[maybe_unused]] const Projectile& projectile,
[[maybe_unused]] const Target& target) const
{
#if defined(OMATH_USE_AVX2) && defined(__i386__) && defined(__x86_64__)
const float bulletGravity = m_gravityConstant * projectile.m_gravityScale;
@@ -28,16 +28,16 @@ namespace omath::projectile_prediction
for (; currentTime <= m_maximumSimulationTime; currentTime += m_simulationTimeStep * SIMD_FACTOR)
{
const __m256 times =
_mm256_setr_ps(currentTime, currentTime + m_simulationTimeStep,
currentTime + m_simulationTimeStep * 2, currentTime + m_simulationTimeStep * 3,
currentTime + m_simulationTimeStep * 4, currentTime + m_simulationTimeStep * 5,
currentTime + m_simulationTimeStep * 6, currentTime + m_simulationTimeStep * 7);
const __m256 times
= _mm256_setr_ps(currentTime, currentTime + m_simulationTimeStep,
currentTime + m_simulationTimeStep * 2, currentTime + m_simulationTimeStep * 3,
currentTime + m_simulationTimeStep * 4, currentTime + m_simulationTimeStep * 5,
currentTime + m_simulationTimeStep * 6, currentTime + m_simulationTimeStep * 7);
const __m256 targetX =
_mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.x), times, _mm256_set1_ps(target.m_origin.x));
const __m256 targetY =
_mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.y), times, _mm256_set1_ps(target.m_origin.y));
const __m256 targetX
= _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.x), times, _mm256_set1_ps(target.m_origin.x));
const __m256 targetY
= _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.y), times, _mm256_set1_ps(target.m_origin.y));
const __m256 timesSq = _mm256_mul_ps(times, times);
const __m256 targetZ = _mm256_fmadd_ps(_mm256_set1_ps(target.m_velocity.z), times,
_mm256_fnmadd_ps(_mm256_set1_ps(0.5f * m_gravityConstant), timesSq,
@@ -112,25 +112,32 @@ namespace omath::projectile_prediction
}
return std::nullopt;
#else
throw std::runtime_error(
std::format("{} AVX2 feature is not enabled!", std::source_location::current().function_name()));
#endif
}
ProjPredEngineAVX2::ProjPredEngineAVX2(const float gravityConstant, const float simulationTimeStep,
const float maximumSimulationTime) :
m_gravityConstant(gravityConstant), m_simulationTimeStep(simulationTimeStep),
m_maximumSimulationTime(maximumSimulationTime)
ProjPredEngineAvx2::ProjPredEngineAvx2(const float gravity_constant, const float simulation_time_step,
const float maximum_simulation_time)
: m_gravity_constant(gravity_constant), m_simulation_time_step(simulation_time_step),
m_maximum_simulation_time(maximum_simulation_time)
{
}
std::optional<float> ProjPredEngineAVX2::CalculatePitch(const Vector3<float>& projOrigin,
const Vector3<float>& targetPos, const float bulletGravity,
const float v0, const float time)
std::optional<float> ProjPredEngineAvx2::calculate_pitch([[maybe_unused]] const Vector3<float>& proj_origin,
[[maybe_unused]] const Vector3<float>& target_pos,
[[maybe_unused]] const float bullet_gravity,
[[maybe_unused]] const float v0,
[[maybe_unused]] const float time)
{
#if defined(OMATH_USE_AVX2) && defined(__i386__) && defined(__x86_64__)
if (time <= 0.0f)
return std::nullopt;
const Vector3 delta = targetPos - projOrigin;
const Vector3 delta = target_pos - proj_origin;
const float dSqr = delta.x * delta.x + delta.y * delta.y;
const float h = delta.z;
const float term = h + 0.5f * bulletGravity * time * time;
const float term = h + 0.5f * bullet_gravity * time * time;
const float requiredV0Sqr = (dSqr + term * term) / (time * time);
const float v0Sqr = v0 * v0;
@@ -140,7 +147,6 @@ namespace omath::projectile_prediction
if (dSqr == 0.0f)
return term >= 0.0f ? 90.0f : -90.0f;
const float d = std::sqrt(dSqr);
const float tanTheta = term / d;
return angles::RadiansToDegrees(std::atan(tanTheta));

View File

@@ -1,68 +0,0 @@
#include "omath/projectile_prediction/proj_pred_engine_legacy.hpp"
#include <cmath>
#include <omath/angles.hpp>
namespace omath::projectile_prediction
{
ProjPredEngineLegacy::ProjPredEngineLegacy(const float gravityConstant, const float simulationTimeStep,
const float maximumSimulationTime, const float distanceTolerance) :
m_gravityConstant(gravityConstant), m_simulationTimeStep(simulationTimeStep),
m_maximumSimulationTime(maximumSimulationTime), m_distanceTolerance(distanceTolerance)
{
}
std::optional<Vector3<float>> ProjPredEngineLegacy::MaybeCalculateAimPoint(const Projectile& projectile,
const Target& target) const
{
for (float time = 0.f; time < m_maximumSimulationTime; time += m_simulationTimeStep)
{
const auto predictedTargetPosition = target.PredictPosition(time, m_gravityConstant);
const auto projectilePitch = MaybeCalculateProjectileLaunchPitchAngle(projectile, predictedTargetPosition);
if (!projectilePitch.has_value()) [[unlikely]]
continue;
if (!IsProjectileReachedTarget(predictedTargetPosition, projectile, projectilePitch.value(), time))
continue;
const auto delta2d = (predictedTargetPosition - projectile.m_origin).Length2D();
const auto height = delta2d * std::tan(angles::DegreesToRadians(projectilePitch.value()));
return Vector3(predictedTargetPosition.x, predictedTargetPosition.y, projectile.m_origin.z + height);
}
return std::nullopt;
}
std::optional<float>
ProjPredEngineLegacy::MaybeCalculateProjectileLaunchPitchAngle(const Projectile& projectile,
const Vector3<float>& targetPosition) const
{
const auto bulletGravity = m_gravityConstant * projectile.m_gravityScale;
const auto delta = targetPosition - projectile.m_origin;
const auto distance2d = delta.Length2D();
const auto distance2dSqr = distance2d * distance2d;
const auto launchSpeedSqr = projectile.m_launchSpeed * projectile.m_launchSpeed;
float root = launchSpeedSqr * launchSpeedSqr -
bulletGravity * (bulletGravity * distance2dSqr + 2.0f * delta.z * launchSpeedSqr);
if (root < 0.0f) [[unlikely]]
return std::nullopt;
root = std::sqrt(root);
const float angle = std::atan((launchSpeedSqr - root) / (bulletGravity * distance2d));
return angles::RadiansToDegrees(angle);
}
bool ProjPredEngineLegacy::IsProjectileReachedTarget(const Vector3<float>& targetPosition, const Projectile& projectile,
const float pitch, const float time) const
{
const auto yaw = projectile.m_origin.ViewAngleTo(targetPosition).y;
const auto projectilePosition = projectile.PredictPosition(pitch, yaw, time, m_gravityConstant);
return projectilePosition.DistTo(targetPosition) <= m_distanceTolerance;
}
} // namespace omath::projectile_prediction

View File

@@ -3,19 +3,8 @@
//
#include "omath/projectile_prediction/projectile.hpp"
#include <omath/engines/source_engine/formulas.hpp>
namespace omath::projectile_prediction
{
Vector3<float> Projectile::PredictPosition(const float pitch, const float yaw, const float time, const float gravity) const
{
auto currentPos = m_origin + source_engine::ForwardVector({source_engine::PitchAngle::FromDegrees(-pitch),
source_engine::YawAngle::FromDegrees(yaw),
source_engine::RollAngle::FromDegrees(0)}) *
m_launchSpeed * time;
currentPos.z -= (gravity * m_gravityScale) * (time * time) * 0.5f;
return currentPos;
}
} // namespace omath::prediction
} // namespace omath::projectile_prediction

View File

@@ -1,11 +0,0 @@
//
// Created by Vlad on 6/9/2024.
//
#include "omath/projectile_prediction/projectile.hpp"
namespace omath::prediction
{
}

View File

@@ -1 +0,0 @@
target_sources(omath PRIVATE camera.cpp)

View File

@@ -1,9 +0,0 @@
//
// Created by Vlad on 27.08.2024.
//
#include "omath/projection/camera.hpp"
namespace omath::projection
{
}

View File

@@ -1,40 +1,22 @@
enable_testing()
project(unit-tests)
project(unit_tests)
include(GoogleTest)
add_executable(unit-tests
general/unit_test_prediction.cpp
general/unit_test_matrix.cpp
general/unit_test_mat.cpp
general/unit_test_a_star.cpp
general/unit_test_projection.cpp
general/unit_test_vector3.cpp
general/unit_test_vector2.cpp
general/unit_test_color.cpp
general/unit_test_vector4.cpp
general/unit_test_line_trace.cpp
general/unit_test_angles.cpp
general/unit_test_view_angles.cpp
general/unit_test_angle.cpp
general/unit_test_triangle.cpp
engines/unit_test_open_gl.cpp
engines/unit_test_unity_engine.cpp
engines/unit_test_source_engine.cpp
engines/unit_test_iw_engine.cpp
file(GLOB_RECURSE UNIT_TESTS_SOURCES CONFIGURE_DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp")
add_executable(${PROJECT_NAME} ${UNIT_TESTS_SOURCES})
)
set_target_properties(unit-tests PROPERTIES
set_target_properties(unit_tests PROPERTIES
ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_SOURCE_DIR}/out/${CMAKE_BUILD_TYPE}"
UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 20
CXX_STANDARD 23
CXX_STANDARD_REQUIRED ON)
target_link_libraries(unit-tests PRIVATE gtest gtest_main omath::omath)
target_link_libraries(${PROJECT_NAME} PRIVATE gtest gtest_main omath::omath)
gtest_discover_tests(unit-tests)
gtest_discover_tests(${PROJECT_NAME})

View File

@@ -7,71 +7,71 @@
#include <omath/engines/iw_engine/formulas.hpp>
TEST(UnitTestIwEngine, ForwardVector)
TEST(unit_test_iw_engine, ForwardVector)
{
const auto forward = omath::iw_engine::ForwardVector({});
const auto forward = omath::iw_engine::forward_vector({});
EXPECT_EQ(forward, omath::iw_engine::kAbsForward);
EXPECT_EQ(forward, omath::iw_engine::k_abs_forward);
}
TEST(UnitTestIwEngine, RightVector)
TEST(unit_test_iw_engine, RightVector)
{
const auto right = omath::iw_engine::RightVector({});
const auto right = omath::iw_engine::right_vector({});
EXPECT_EQ(right, omath::iw_engine::kAbsRight);
EXPECT_EQ(right, omath::iw_engine::k_abs_right);
}
TEST(UnitTestIwEngine, UpVector)
TEST(unit_test_iw_engine, UpVector)
{
const auto up = omath::iw_engine::UpVector({});
EXPECT_EQ(up, omath::iw_engine::kAbsUp);
const auto up = omath::iw_engine::up_vector({});
EXPECT_EQ(up, omath::iw_engine::k_abs_up);
}
TEST(UnitTestIwEngine, ForwardVectorRotationYaw)
TEST(unit_test_iw_engine, ForwardVectorRotationYaw)
{
omath::iw_engine::ViewAngles angles;
angles.yaw = omath::iw_engine::YawAngle::FromDegrees(-90.f);
angles.yaw = omath::iw_engine::YawAngle::from_degrees(-90.f);
const auto forward = omath::iw_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::iw_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestIwEngine, ForwardVectorRotationPitch)
TEST(unit_test_iw_engine, ForwardVectorRotationPitch)
{
omath::iw_engine::ViewAngles angles;
angles.pitch = omath::iw_engine::PitchAngle::FromDegrees(-89.f);
angles.pitch = omath::iw_engine::PitchAngle::from_degrees(-89.f);
const auto forward = omath::iw_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsUp.x, 0.02f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsUp.y, 0.01f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsUp.z, 0.01f);
const auto forward = omath::iw_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_up.x, 0.02f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_up.y, 0.01f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_up.z, 0.01f);
}
TEST(UnitTestIwEngine, ForwardVectorRotationRoll)
TEST(unit_test_iw_engine, ForwardVectorRotationRoll)
{
omath::iw_engine::ViewAngles angles;
angles.roll = omath::iw_engine::RollAngle::FromDegrees(90.f);
angles.roll = omath::iw_engine::RollAngle::from_degrees(90.f);
const auto forward = omath::iw_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::iw_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::iw_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::iw_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::iw_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestIwEngine, ProjectTargetMovedFromCamera)
TEST(unit_test_iw_engine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 1000.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({distance, 0, 0});
const auto projected = cam.world_to_screen({distance, 0, 0});
EXPECT_TRUE(projected.has_value());
@@ -83,23 +83,23 @@ TEST(UnitTestIwEngine, ProjectTargetMovedFromCamera)
}
}
TEST(UnitTestIwEngine, CameraSetAndGetFov)
TEST(unit_test_iw_engine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestIwEngine, CameraSetAndGetOrigin)
TEST(unit_test_iw_engine, CameraSetAndGetOrigin)
{
auto cam = omath::iw_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -7,71 +7,71 @@
#include <omath/engines/opengl_engine/formulas.hpp>
TEST(UnitTestOpenGL, ForwardVector)
TEST(unit_test_opengl, ForwardVector)
{
const auto forward = omath::opengl_engine::ForwardVector({});
EXPECT_EQ(forward, omath::opengl_engine::kAbsForward);
const auto forward = omath::opengl_engine::forward_vector({});
EXPECT_EQ(forward, omath::opengl_engine::k_abs_forward);
}
TEST(UnitTestOpenGL, RightVector)
TEST(unit_test_opengl, RightVector)
{
const auto right = omath::opengl_engine::RightVector({});
EXPECT_EQ(right, omath::opengl_engine::kAbsRight);
const auto right = omath::opengl_engine::right_vector({});
EXPECT_EQ(right, omath::opengl_engine::k_abs_right);
}
TEST(UnitTestOpenGL, UpVector)
TEST(unit_test_opengl, UpVector)
{
const auto up = omath::opengl_engine::UpVector({});
EXPECT_EQ(up, omath::opengl_engine::kAbsUp);
const auto up = omath::opengl_engine::up_vector({});
EXPECT_EQ(up, omath::opengl_engine::k_abs_up);
}
TEST(UnitTestOpenGL, ForwardVectorRotationYaw)
TEST(unit_test_opengl, ForwardVectorRotationYaw)
{
omath::opengl_engine::ViewAngles angles;
angles.yaw = omath::opengl_engine::YawAngle::FromDegrees(90.f);
angles.yaw = omath::opengl_engine::YawAngle::from_degrees(90.f);
const auto forward = omath::opengl_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::opengl_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestOpenGL, ForwardVectorRotationPitch)
TEST(unit_test_opengl, ForwardVectorRotationPitch)
{
omath::opengl_engine::ViewAngles angles;
angles.pitch = omath::opengl_engine::PitchAngle::FromDegrees(-90.f);
angles.pitch = omath::opengl_engine::PitchAngle::from_degrees(-90.f);
const auto forward = omath::opengl_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsUp.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsUp.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsUp.z, 0.00001f);
const auto forward = omath::opengl_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_up.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_up.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_up.z, 0.00001f);
}
TEST(UnitTestOpenGL, ForwardVectorRotationRoll)
TEST(unit_test_opengl, ForwardVectorRotationRoll)
{
omath::opengl_engine::ViewAngles angles;
angles.roll = omath::opengl_engine::RollAngle::FromDegrees(-90.f);
angles.roll = omath::opengl_engine::RollAngle::from_degrees(-90.f);
const auto forward = omath::opengl_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::opengl_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::opengl_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::opengl_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::opengl_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestOpenGL, ProjectTargetMovedFromCamera)
TEST(unit_test_opengl, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = -10.f; distance > -1000.f; distance -= 0.01f)
{
const auto projected = cam.WorldToScreen({0, 0, distance});
const auto projected = cam.world_to_screen({0, 0, distance});
EXPECT_TRUE(projected.has_value());
@@ -83,23 +83,23 @@ TEST(UnitTestOpenGL, ProjectTargetMovedFromCamera)
}
}
TEST(UnitTestOpenGL, CameraSetAndGetFov)
TEST(unit_test_opengl, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestOpenGL, CameraSetAndGetOrigin)
TEST(unit_test_opengl, CameraSetAndGetOrigin)
{
auto cam = omath::opengl_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -7,71 +7,71 @@
#include <omath/engines/source_engine/formulas.hpp>
TEST(UnitTestSourceEngine, ForwardVector)
TEST(unit_test_source_engine, ForwardVector)
{
const auto forward = omath::source_engine::ForwardVector({});
const auto forward = omath::source_engine::forward_vector({});
EXPECT_EQ(forward, omath::source_engine::kAbsForward);
EXPECT_EQ(forward, omath::source_engine::k_abs_forward);
}
TEST(UnitTestSourceEngine, RightVector)
TEST(unit_test_source_engine, RightVector)
{
const auto right = omath::source_engine::RightVector({});
const auto right = omath::source_engine::right_vector({});
EXPECT_EQ(right, omath::source_engine::kAbsRight);
EXPECT_EQ(right, omath::source_engine::k_abs_right);
}
TEST(UnitTestSourceEngine, UpVector)
TEST(unit_test_source_engine, UpVector)
{
const auto up = omath::source_engine::UpVector({});
EXPECT_EQ(up, omath::source_engine::kAbsUp);
const auto up = omath::source_engine::up_vector({});
EXPECT_EQ(up, omath::source_engine::k_abs_up);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationYaw)
TEST(unit_test_source_engine, ForwardVectorRotationYaw)
{
omath::source_engine::ViewAngles angles;
angles.yaw = omath::source_engine::YawAngle::FromDegrees(-90.f);
angles.yaw = omath::source_engine::YawAngle::from_degrees(-90.f);
const auto forward = omath::source_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::source_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationPitch)
TEST(unit_test_source_engine, ForwardVectorRotationPitch)
{
omath::source_engine::ViewAngles angles;
angles.pitch = omath::source_engine::PitchAngle::FromDegrees(-89.f);
angles.pitch = omath::source_engine::PitchAngle::from_degrees(-89.f);
const auto forward = omath::source_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsUp.x, 0.02f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsUp.y, 0.01f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsUp.z, 0.01f);
const auto forward = omath::source_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_up.x, 0.02f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_up.y, 0.01f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_up.z, 0.01f);
}
TEST(UnitTestSourceEngine, ForwardVectorRotationRoll)
TEST(unit_test_source_engine, ForwardVectorRotationRoll)
{
omath::source_engine::ViewAngles angles;
angles.roll = omath::source_engine::RollAngle::FromDegrees(90.f);
angles.roll = omath::source_engine::RollAngle::from_degrees(90.f);
const auto forward = omath::source_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::source_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::source_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::source_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::source_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestSourceEngine, ProjectTargetMovedFromCamera)
TEST(unit_test_source_engine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 1000.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({distance, 0, 0});
const auto projected = cam.world_to_screen({distance, 0, 0});
EXPECT_TRUE(projected.has_value());
@@ -83,15 +83,15 @@ TEST(UnitTestSourceEngine, ProjectTargetMovedFromCamera)
}
}
TEST(UnitTestSourceEngine, ProjectTargetMovedUp)
TEST(unit_test_source_engine, ProjectTargetMovedUp)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
const auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
auto prev = 1080.f;
for (float distance = 0.0f; distance < 10.f; distance += 1.f)
{
const auto projected = cam.WorldToScreen({100.f, 0, distance});
const auto projected = cam.world_to_screen({100.f, 0, distance});
EXPECT_TRUE(projected.has_value());
if (!projected.has_value())
@@ -103,23 +103,23 @@ TEST(UnitTestSourceEngine, ProjectTargetMovedUp)
}
}
TEST(UnitTestSourceEngine, CameraSetAndGetFov)
TEST(unit_test_source_engine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestSourceEngine, CameraSetAndGetOrigin)
TEST(unit_test_source_engine, CameraSetAndGetOrigin)
{
auto cam = omath::source_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -5,73 +5,73 @@
#include <omath/engines/unity_engine/camera.hpp>
#include <omath/engines/unity_engine/constants.hpp>
#include <omath/engines/unity_engine/formulas.hpp>
#include <print>
TEST(UnitTestUnityEngine, ForwardVector)
TEST(unit_test_unity_engine, ForwardVector)
{
const auto forward = omath::unity_engine::ForwardVector({});
const auto forward = omath::unity_engine::forward_vector({});
EXPECT_EQ(forward, omath::unity_engine::kAbsForward);
EXPECT_EQ(forward, omath::unity_engine::k_abs_forward);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationYaw)
TEST(unit_test_unity_engine, ForwardVectorRotationYaw)
{
omath::unity_engine::ViewAngles angles;
angles.yaw = omath::unity_engine::YawAngle::FromDegrees(90.f);
angles.yaw = omath::unity_engine::YawAngle::from_degrees(90.f);
const auto forward = omath::unity_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::unity_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationPitch)
TEST(unit_test_unity_engine, ForwardVectorRotationPitch)
{
omath::unity_engine::ViewAngles angles;
angles.pitch = omath::unity_engine::PitchAngle::FromDegrees(-90.f);
angles.pitch = omath::unity_engine::PitchAngle::from_degrees(-90.f);
const auto forward = omath::unity_engine::ForwardVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsUp.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsUp.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsUp.z, 0.00001f);
const auto forward = omath::unity_engine::forward_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_up.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_up.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_up.z, 0.00001f);
}
TEST(UnitTestUnityEngine, ForwardVectorRotationRoll)
TEST(unit_test_unity_engine, ForwardVectorRotationRoll)
{
omath::unity_engine::ViewAngles angles;
angles.roll = omath::unity_engine::RollAngle::FromDegrees(-90.f);
angles.roll = omath::unity_engine::RollAngle::from_degrees(-90.f);
const auto forward = omath::unity_engine::UpVector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::kAbsRight.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::kAbsRight.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::kAbsRight.z, 0.00001f);
const auto forward = omath::unity_engine::up_vector(angles);
EXPECT_NEAR(forward.x, omath::unity_engine::k_abs_right.x, 0.00001f);
EXPECT_NEAR(forward.y, omath::unity_engine::k_abs_right.y, 0.00001f);
EXPECT_NEAR(forward.z, omath::unity_engine::k_abs_right.z, 0.00001f);
}
TEST(UnitTestUnityEngine, RightVector)
TEST(unit_test_unity_engine, RightVector)
{
const auto right = omath::unity_engine::RightVector({});
const auto right = omath::unity_engine::right_vector({});
EXPECT_EQ(right, omath::unity_engine::kAbsRight);
EXPECT_EQ(right, omath::unity_engine::k_abs_right);
}
TEST(UnitTestUnityEngine, UpVector)
TEST(unit_test_unity_engine, UpVector)
{
const auto up = omath::unity_engine::UpVector({});
EXPECT_EQ(up, omath::unity_engine::kAbsUp);
const auto up = omath::unity_engine::up_vector({});
EXPECT_EQ(up, omath::unity_engine::k_abs_up);
}
TEST(UnitTestUnityEngine, ProjectTargetMovedFromCamera)
TEST(unit_test_unity_engine, ProjectTargetMovedFromCamera)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(60.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(60.f);
const auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1280.f, 720.f}, fov, 0.01f, 1000.f);
for (float distance = 0.02f; distance < 100.f; distance += 0.01f)
{
const auto projected = cam.WorldToScreen({0, 0, distance});
const auto projected = cam.world_to_screen({0, 0, distance});
EXPECT_TRUE(projected.has_value());
@@ -82,32 +82,32 @@ TEST(UnitTestUnityEngine, ProjectTargetMovedFromCamera)
EXPECT_NEAR(projected->y, 360, 0.00001f);
}
}
TEST(UnitTestUnityEngine, Project)
TEST(unit_test_unity_engine, Project)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(60.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(60.f);
const auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1280.f, 720.f}, fov, 0.03f, 1000.f);
const auto proj = cam.WorldToScreen({5.f, 3, 10.f});
const auto proj = cam.world_to_screen({5.f, 3, 10.f});
std::println("{} {}", proj->x, proj->y);
}
TEST(UnitTestUnityEngine, CameraSetAndGetFov)
TEST(unit_test_unity_engine, CameraSetAndGetFov)
{
constexpr auto fov = omath::projection::FieldOfView::FromDegrees(90.f);
constexpr auto fov = omath::projection::FieldOfView::from_degrees(90.f);
auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, fov, 0.01f, 1000.f);
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 90.f);
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 90.f);
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}
TEST(UnitTestUnityEngine, CameraSetAndGetOrigin)
TEST(unit_test_unity_engine, CameraSetAndGetOrigin)
{
auto cam = omath::unity_engine::Camera({0, 0, 0}, {}, {1920.f, 1080.f}, {}, 0.01f, 1000.f);
EXPECT_EQ(cam.GetOrigin(), omath::Vector3<float>{});
cam.SetFieldOfView(omath::projection::FieldOfView::FromDegrees(50.f));
EXPECT_EQ(cam.get_origin(), omath::Vector3<float>{});
cam.set_field_of_view(omath::projection::FieldOfView::from_degrees(50.f));
EXPECT_EQ(cam.GetFieldOfView().AsDegrees(), 50.f);
EXPECT_EQ(cam.get_field_of_view().as_degrees(), 50.f);
}

View File

@@ -4,14 +4,13 @@
#include <gtest/gtest.h>
#include <omath/pathfinding/a_star.hpp>
TEST(UnitTestAstar, FindingRightPath)
TEST(unit_test_a_star, finding_right_path)
{
omath::pathfinding::NavigationMesh mesh;
mesh.m_verTextMap[{0.f, 0.f, 0.f}] = {{0.f, 1.f, 0.f}};
mesh.m_verTextMap[{0.f, 1.f, 0.f}] = {{0.f, 2.f, 0.f}};
mesh.m_verTextMap[{0.f, 2.f, 0.f}] = {{0.f, 3.f, 0.f}};
mesh.m_verTextMap[{0.f, 3.f, 0.f}] = {};
std::ignore = omath::pathfinding::Astar::FindPath({}, {0.f, 3.f, 0.f}, mesh);
mesh.m_vertex_map[{0.f, 0.f, 0.f}] = {{0.f, 1.f, 0.f}};
mesh.m_vertex_map[{0.f, 1.f, 0.f}] = {{0.f, 2.f, 0.f}};
mesh.m_vertex_map[{0.f, 2.f, 0.f}] = {{0.f, 3.f, 0.f}};
mesh.m_vertex_map[{0.f, 3.f, 0.f}] = {};
std::ignore = omath::pathfinding::Astar::find_path({}, {0.f, 3.f, 0.f}, mesh);
}

View File

@@ -4,46 +4,46 @@
#include <gtest/gtest.h>
#include <omath/angles.hpp>
TEST(UnitTestAngles, RadiansToDeg)
TEST(unit_test_angles, radians_to_deg)
{
constexpr float rad = 67;
EXPECT_NEAR(omath::angles::RadiansToDegrees(rad), 3838.82f, 0.01f);
EXPECT_NEAR(omath::angles::radians_to_degrees(rad), 3838.82f, 0.01f);
}
TEST(UnitTestAngles, DegreesToRadians)
TEST(unit_test_angles, degrees_to_radians)
{
constexpr float degree = 90;
EXPECT_NEAR(omath::angles::DegreesToRadians(degree), 1.5708f, 0.01f);
EXPECT_NEAR(omath::angles::degrees_to_radians(degree), 1.5708f, 0.01f);
}
TEST(UnitTestAngles, HorizontalFovToVerical)
TEST(unit_test_angles, horizontal_fov_to_verical)
{
constexpr float hFov = 90;
constexpr float aspectRation = 16.0f / 9.0f;
const auto verticalFov = omath::angles::HorizontalFovToVertical(hFov, aspectRation);
const auto verticalFov = omath::angles::horizontal_fov_to_vertical(hFov, aspectRation);
EXPECT_NEAR(verticalFov, 58.71f, 0.01f);
}
TEST(UnitTestAngles, VerticalToHorizontal)
TEST(unit_test_angles, vertical_to_horizontal)
{
constexpr float vFov = 58.71;
constexpr float aspectRation = 16.0f / 9.0f;
const auto horizontalFov = omath::angles::VerticalFovToHorizontal(vFov, aspectRation);
const auto horizontalFov = omath::angles::vertical_fov_to_horizontal(vFov, aspectRation);
EXPECT_NEAR(horizontalFov, 89.99f, 0.01f);
}
TEST(UnitTestAngles, WrapAngle)
TEST(unit_test_angles, wrap_angle)
{
const float wrapped = omath::angles::WrapAngle(361.f, 0.f, 360.f);
const float wrapped = omath::angles::wrap_angle(361.f, 0.f, 360.f);
EXPECT_NEAR(wrapped, 1.f, 0.01f);
}
TEST(UnitTestAngles, WrapAngleNegativeRange)
TEST(unit_test_angles, wrap_angle_negative_range)
{
const float wrapped = omath::angles::WrapAngle(-90.f, 0.f, 360.f);
const float wrapped = omath::angles::wrap_angle(-90.f, 0.f, 360.f);
EXPECT_NEAR(wrapped, 270.f, 0.01f);
}

View File

@@ -0,0 +1,6 @@
//
// Created by Vlad on 4/18/2025.
//
#include <gtest/gtest.h>
#include <omath/3d_primitives/box.hpp>

View File

@@ -7,7 +7,7 @@
using namespace omath;
class UnitTestColor : public ::testing::Test
class unit_test_color : public ::testing::Test
{
protected:
Color color1;
@@ -15,13 +15,13 @@ protected:
void SetUp() override
{
color1 = Color::Red();
color2 = Color::Green();
color1 = Color::red();
color2 = Color::green();
}
};
// Test constructors
TEST_F(UnitTestColor, Constructor_Float)
TEST_F(unit_test_color, Constructor_Float)
{
constexpr Color color(0.5f, 0.5f, 0.5f, 1.0f);
EXPECT_FLOAT_EQ(color.x, 0.5f);
@@ -30,7 +30,7 @@ TEST_F(UnitTestColor, Constructor_Float)
EXPECT_FLOAT_EQ(color.w, 1.0f);
}
TEST_F(UnitTestColor, Constructor_Vector4)
TEST_F(unit_test_color, Constructor_Vector4)
{
constexpr omath::Vector4 vec(0.2f, 0.4f, 0.6f, 0.8f);
Color color(vec);
@@ -41,18 +41,18 @@ TEST_F(UnitTestColor, Constructor_Vector4)
}
// Test static methods for color creation
TEST_F(UnitTestColor, FromRGBA)
TEST_F(unit_test_color, FromRGBA)
{
constexpr Color color = Color::FromRGBA(128, 64, 32, 255);
constexpr Color color = Color::from_rgba(128, 64, 32, 255);
EXPECT_FLOAT_EQ(color.x, 128.0f / 255.0f);
EXPECT_FLOAT_EQ(color.y, 64.0f / 255.0f);
EXPECT_FLOAT_EQ(color.z, 32.0f / 255.0f);
EXPECT_FLOAT_EQ(color.w, 1.0f);
}
TEST_F(UnitTestColor, FromHSV)
TEST_F(unit_test_color, FromHSV)
{
constexpr Color color = Color::FromHSV(0.0f, 1.0f, 1.0f); // Red in HSV
constexpr Color color = Color::from_hsv(0.0f, 1.0f, 1.0f); // Red in HSV
EXPECT_FLOAT_EQ(color.x, 1.0f);
EXPECT_FLOAT_EQ(color.y, 0.0f);
EXPECT_FLOAT_EQ(color.z, 0.0f);
@@ -60,18 +60,18 @@ TEST_F(UnitTestColor, FromHSV)
}
// Test HSV conversion
TEST_F(UnitTestColor, ToHSV)
TEST_F(unit_test_color, ToHSV)
{
HSV hsv = color1.ToHSV(); // Red color
Hsv hsv = color1.to_hsv(); // Red color
EXPECT_FLOAT_EQ(hsv.hue, 0.0f);
EXPECT_FLOAT_EQ(hsv.saturation, 1.0f);
EXPECT_FLOAT_EQ(hsv.value, 1.0f);
}
// Test color blending
TEST_F(UnitTestColor, Blend)
TEST_F(unit_test_color, Blend)
{
Color blended = color1.Blend(color2, 0.5f);
Color blended = color1.blend(color2, 0.5f);
EXPECT_FLOAT_EQ(blended.x, 0.5f);
EXPECT_FLOAT_EQ(blended.y, 0.5f);
EXPECT_FLOAT_EQ(blended.z, 0.0f);
@@ -79,11 +79,11 @@ TEST_F(UnitTestColor, Blend)
}
// Test predefined colors
TEST_F(UnitTestColor, PredefinedColors)
TEST_F(unit_test_color, PredefinedColors)
{
constexpr Color red = Color::Red();
constexpr Color green = Color::Green();
constexpr Color blue = Color::Blue();
constexpr Color red = Color::red();
constexpr Color green = Color::green();
constexpr Color blue = Color::blue();
EXPECT_FLOAT_EQ(red.x, 1.0f);
EXPECT_FLOAT_EQ(red.y, 0.0f);
@@ -102,11 +102,11 @@ TEST_F(UnitTestColor, PredefinedColors)
}
// Test non-member function: Blend for Vector3
TEST_F(UnitTestColor, BlendVector3)
TEST_F(unit_test_color, BlendVector3)
{
constexpr Color v1(1.0f, 0.0f, 0.0f, 1.f); // Red
constexpr Color v2(0.0f, 1.0f, 0.0f, 1.f); // Green
constexpr Color blended = v1.Blend(v2, 0.5f);
constexpr Color blended = v1.blend(v2, 0.5f);
EXPECT_FLOAT_EQ(blended.x, 0.5f);
EXPECT_FLOAT_EQ(blended.y, 0.5f);
EXPECT_FLOAT_EQ(blended.z, 0.0f);

View File

@@ -1,80 +1,120 @@
//
// Revised unittest suite for LineTracer (segmentbased MöllerTrumbore)
// Pure ASCII: avoids nonstandard characters that MSVC rejects.
//
#include "gtest/gtest.h"
#include "omath/collision/line_tracer.hpp"
#include "omath/triangle.hpp"
#include "omath/vector3.hpp"
#include <cmath>
using namespace omath;
using namespace omath::collision;
class LineTracerTest : public ::testing::Test
using Vec3 = Vector3<float>;
namespace
{
protected:
// Set up common variables for use in each test
Vector3<float> vertex1{0.0f, 0.0f, 0.0f};
Vector3<float> vertex2{1.0f, 0.0f, 0.0f};
Vector3<float> vertex3{0.0f, 1.0f, 0.0f};
Triangle<Vector3<float>> triangle{vertex1, vertex2, vertex3};
};
// Test that a ray intersecting the triangle returns false for CanTraceLine
TEST_F(LineTracerTest, RayIntersectsTriangle)
{
constexpr Ray ray{{0.3f, 0.3f, -1.0f}, {0.3f, 0.3f, 1.0f}};
EXPECT_FALSE(LineTracer::CanTraceLine(ray, triangle));
}
// -----------------------------------------------------------------------------
// Constants & helpers
// -----------------------------------------------------------------------------
constexpr float kTol = 1e-5f;
// Test that a ray parallel to the triangle plane returns true for CanTraceLine
TEST_F(LineTracerTest, RayParallelToTriangle)
{
constexpr Ray ray{{0.3f, 0.3f, 1.0f}, {0.3f, 0.3f, 2.0f}};
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
bool VecEqual(const Vec3& a, const Vec3& b, float tol = kTol)
{
return std::fabs(a.x - b.x) < tol &&
std::fabs(a.y - b.y) < tol &&
std::fabs(a.z - b.z) < tol;
}
// Test that a ray starting inside the triangle but pointing away returns true
TEST_F(LineTracerTest, RayStartsInTriangleButDoesNotIntersect)
{
constexpr Ray ray{{0.3f, 0.3f, 0.0f}, {0.3f, 0.3f, -1.0f}};
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
// -----------------------------------------------------------------------------
// Fixture with one canonical rightangled triangle in the XY plane.
// -----------------------------------------------------------------------------
class line_tracer_fixture : public ::testing::Test
{
protected:
line_tracer_fixture() :
triangle({0.f, 0.f, 0.f}, {1.f, 0.f, 0.f}, {0.f, 1.f, 0.f})
{
}
// Test that a ray not intersecting the triangle plane returns true
TEST_F(LineTracerTest, RayMissesTriangle)
{
constexpr Ray ray{{2.0f, 2.0f, -1.0f}, {2.0f, 2.0f, 1.0f}};
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
// Test that a ray lying exactly in the plane of the triangle without intersecting returns true
TEST_F(LineTracerTest, RayInPlaneNotIntersecting)
{
constexpr Ray ray{{-1.0f, -1.0f, 0.0f}, {1.5f, 1.5f, 0.0f}};
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
TEST_F(LineTracerTest, RayIntersectsVertex)
{
const Ray ray{{-1.0f, -1.0f, -1.0f}, vertex1}; // Intersecting at vertex1
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
TEST_F(LineTracerTest, RayIntersectsEdge)
{
constexpr Ray ray{{-1.0f, 0.0f, -1.0f}, {0.5f, 0.0f, 0.0f}};
// Intersecting on the edge between vertex1 and vertex2
EXPECT_TRUE(LineTracer::CanTraceLine(ray, triangle));
}
TEST_F(LineTracerTest, TriangleFarBeyondRayEndPoint)
{
// Define a ray with a short length
constexpr Ray ray{{0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
// Define a triangle far beyond the ray's endpoint
constexpr Triangle<Vector3<float>> distantTriangle{
{1000.0f, 1000.0f, 1000.0f}, {1001.0f, 1000.0f, 1000.0f}, {1000.0f, 1001.0f, 1000.0f}
Triangle<Vec3> triangle;
};
// Expect true because the ray ends long before it could reach the distant triangle
EXPECT_TRUE(LineTracer::CanTraceLine(ray, distantTriangle));
}
// -----------------------------------------------------------------------------
// Datadriven tests for CanTraceLine
// -----------------------------------------------------------------------------
struct TraceCase
{
Ray ray;
bool expected_clear; // true => segment does NOT hit the triangle
};
class CanTraceLineParam : public line_tracer_fixture,
public ::testing::WithParamInterface<TraceCase>
{
};
TEST_P(CanTraceLineParam, VariousRays)
{
const auto& p = GetParam();
EXPECT_EQ(LineTracer::can_trace_line(p.ray, triangle), p.expected_clear);
}
INSTANTIATE_TEST_SUITE_P(
BasicScenarios,
CanTraceLineParam,
::testing::Values(
TraceCase{Ray{{ 0.3f, 0.3f, -1.f},{ 0.3f, 0.3f, 1.f}}, false}, // hit through centre
TraceCase{Ray{{ 0.3f, 0.3f, 1.f},{ 0.3f, 0.3f, 2.f}}, true}, // parallel above
TraceCase{Ray{{ 0.3f, 0.3f, 0.f},{ 0.3f, 0.3f,-1.f}}, true}, // starts inside, goes away
TraceCase{Ray{{ 2.0f, 2.0f, -1.f},{ 2.0f, 2.0f, 1.f}}, true}, // misses entirely
TraceCase{Ray{{-1.0f,-1.0f, 0.f},{ 1.5f, 1.5f, 0.f}},true}, // lies in plane, outside tri
TraceCase{Ray{{-1.0f,-1.0f, -1.f},{ 0.0f, 0.0f, 0.f}}, true}, // endpoint on vertex
TraceCase{Ray{{-1.0f, 0.0f, -1.f},{ 0.5f, 0.0f, 0.f}}, true} // endpoint on edge
)
);
// -----------------------------------------------------------------------------
// Validate that the reported hit point is correct for a genuine intersection.
// -----------------------------------------------------------------------------
TEST_F(line_tracer_fixture, HitPointCorrect)
{
constexpr Ray ray{{0.3f, 0.3f, -1.f}, {0.3f, 0.3f, 1.f}};
constexpr Vec3 expected{0.3f, 0.3f, 0.f};
const Vec3 hit = LineTracer::get_ray_hit_point(ray, triangle);
ASSERT_FALSE(VecEqual(hit, ray.end));
EXPECT_TRUE(VecEqual(hit, expected));
}
// -----------------------------------------------------------------------------
// Triangle far beyond the ray should not block.
// -----------------------------------------------------------------------------
TEST_F(line_tracer_fixture, DistantTriangleClear)
{
constexpr Ray short_ray{{0.f, 0.f, 0.f}, {0.f, 0.f, 1.f}};
constexpr Triangle<Vec3> distant{{1000.f, 1000.f, 1000.f},
{1001.f, 1000.f, 1000.f},
{1000.f, 1001.f, 1000.f}};
EXPECT_TRUE(LineTracer::can_trace_line(short_ray, distant));
}
TEST(unit_test_unity_engine, CantHit)
{
constexpr omath::Triangle<Vector3<float>> triangle{{2, 0, 0}, {2, 2, 0}, {2, 2, 2}};
constexpr Ray ray{{}, {1.0, 0, 0}, false};
EXPECT_TRUE(omath::collision::LineTracer::can_trace_line(ray, triangle));
}
TEST(unit_test_unity_engine, CanHit)
{
constexpr omath::Triangle<Vector3<float>> triangle{{2, 0, 0}, {2, 2, 0}, {2, 2, 2}};
constexpr Ray ray{{}, {2.1, 0, 0}, false};
EXPECT_FALSE(omath::collision::LineTracer::can_trace_line(ray, triangle));
}
} // namespace

View File

@@ -5,7 +5,7 @@
using namespace omath;
class UnitTestMat : public ::testing::Test
class unit_test_mat : public ::testing::Test
{
protected:
Mat<2, 2> m1;
@@ -19,28 +19,28 @@ protected:
};
// Test constructors
TEST_F(UnitTestMat, Constructor_Default)
TEST_F(unit_test_mat, Constructor_Default)
{
Mat<3, 3> m;
EXPECT_EQ(m.RowCount(), 3);
EXPECT_EQ(m.ColumnsCount(), 3);
EXPECT_EQ(m.row_count(), 3);
EXPECT_EQ(m.columns_count(), 3);
for (size_t i = 0; i < 3; ++i)
for (size_t j = 0; j < 3; ++j)
EXPECT_FLOAT_EQ(m.At(i, j), 0.0f);
EXPECT_FLOAT_EQ(m.at(i, j), 0.0f);
}
TEST_F(UnitTestMat, Constructor_InitializerList)
TEST_F(unit_test_mat, Constructor_InitializerList)
{
constexpr Mat<2, 2> m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.RowCount(), 2);
EXPECT_EQ(m.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.At(0, 1), 2.0f);
EXPECT_FLOAT_EQ(m.At(1, 0), 3.0f);
EXPECT_FLOAT_EQ(m.At(1, 1), 4.0f);
EXPECT_EQ(m.row_count(), 2);
EXPECT_EQ(m.columns_count(), 2);
EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.at(0, 1), 2.0f);
EXPECT_FLOAT_EQ(m.at(1, 0), 3.0f);
EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f);
}
TEST_F(UnitTestMat, Operator_SquareBrackets)
TEST_F(unit_test_mat, Operator_SquareBrackets)
{
EXPECT_EQ((m2[0, 0]), 1.0f);
EXPECT_EQ((m2[0, 1]), 2.0f);
@@ -48,161 +48,169 @@ TEST_F(UnitTestMat, Operator_SquareBrackets)
EXPECT_EQ((m2[1, 1]), 4.0f);
}
TEST_F(UnitTestMat, Constructor_Copy)
TEST_F(unit_test_mat, Constructor_Copy)
{
Mat<2, 2> m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1));
}
TEST_F(UnitTestMat, Constructor_Move)
TEST_F(unit_test_mat, Constructor_Move)
{
Mat<2, 2> m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
// Test matrix operations
TEST_F(UnitTestMat, Operator_Multiplication_Matrix)
TEST_F(unit_test_mat, Operator_Multiplication_Matrix)
{
Mat<2, 2> m3 = m2 * m2;
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.At(0, 1), 10.0f);
EXPECT_FLOAT_EQ(m3.At(1, 0), 15.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 22.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.at(0, 1), 10.0f);
EXPECT_FLOAT_EQ(m3.at(1, 0), 15.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f);
}
TEST_F(UnitTestMat, Operator_Multiplication_Scalar)
TEST_F(unit_test_mat, Operator_Multiplication_Scalar)
{
Mat<2, 2> m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 8.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f);
}
TEST_F(UnitTestMat, Operator_Division_Scalar)
TEST_F(unit_test_mat, Operator_Division_Scalar)
{
Mat<2, 2> m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 2.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMat, Transpose)
TEST_F(unit_test_mat, Transpose)
{
Mat<2, 2> m3 = m2.Transposed();
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_FLOAT_EQ(m3.At(0, 1), m2.At(1, 0));
EXPECT_FLOAT_EQ(m3.At(1, 0), m2.At(0, 1));
EXPECT_FLOAT_EQ(m3.At(1, 1), m2.At(1, 1));
Mat<2, 2> m3 = m2.transposed();
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
EXPECT_FLOAT_EQ(m3.at(0, 1), m2.at(1, 0));
EXPECT_FLOAT_EQ(m3.at(1, 0), m2.at(0, 1));
EXPECT_FLOAT_EQ(m3.at(1, 1), m2.at(1, 1));
}
TEST_F(UnitTestMat, Determinant)
TEST_F(unit_test_mat, Determinant)
{
const float det = m2.Determinant();
const float det = m2.determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMat, Sum)
TEST_F(unit_test_mat, Sum)
{
const float sum = m2.Sum();
const float sum = m2.sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMat, Clear)
TEST_F(unit_test_mat, Clear)
{
m2.Clear();
for (size_t i = 0; i < m2.RowCount(); ++i)
for (size_t j = 0; j < m2.ColumnsCount(); ++j)
EXPECT_FLOAT_EQ(m2.At(i, j), 0.0f);
m2.clear();
for (size_t i = 0; i < m2.row_count(); ++i)
for (size_t j = 0; j < m2.columns_count(); ++j)
EXPECT_FLOAT_EQ(m2.at(i, j), 0.0f);
}
TEST_F(UnitTestMat, ToString)
TEST_F(unit_test_mat, ToString)
{
const std::string str = m2.ToString();
const std::string str = m2.to_string();
EXPECT_FALSE(str.empty());
EXPECT_EQ(str, "[[ 1.000, 2.000]\n [ 3.000, 4.000]]");
}
// Test assignment operators
TEST_F(UnitTestMat, AssignmentOperator_Copy)
TEST_F(unit_test_mat, AssignmentOperator_Copy)
{
Mat<2, 2> m3;
m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMat, AssignmentOperator_Move)
TEST_F(unit_test_mat, AssignmentOperator_Move)
{
Mat<2, 2> m3;
m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 4.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 4.0f);
// m2 is in a valid but unspecified state after move
}
// Test static methods
TEST_F(UnitTestMat, StaticMethod_ToScreenMat)
TEST_F(unit_test_mat, StaticMethod_ToScreenMat)
{
Mat<4, 4> screenMat = Mat<4, 4>::ToScreenMat(800.0f, 600.0f);
EXPECT_FLOAT_EQ(screenMat.At(0, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(1, 1), -300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 1), 300.0f);
EXPECT_FLOAT_EQ(screenMat.At(3, 3), 1.0f);
Mat<4, 4> screenMat = Mat<4, 4>::to_screen_mat(800.0f, 600.0f);
EXPECT_FLOAT_EQ(screenMat.at(0, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.at(1, 1), -300.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 0), 400.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 1), 300.0f);
EXPECT_FLOAT_EQ(screenMat.at(3, 3), 1.0f);
}
// Test exception handling in At() method
TEST_F(UnitTestMat, Method_At_OutOfRange)
TEST_F(unit_test_mat, Method_At_OutOfRange)
{
#if !defined(NDEBUG) && defined(OMATH_SUPRESS_SAFETY_CHECKS)
EXPECT_THROW(std::ignore = m2.At(2, 0), std::out_of_range);
EXPECT_THROW(std::ignore = m2.At(0, 2), std::out_of_range);
EXPECT_THROW(std::ignore = m2.at(2, 0), std::out_of_range);
EXPECT_THROW(std::ignore = m2.at(0, 2), std::out_of_range);
#endif
}
// Test Determinant for 3x3 matrix
TEST(UnitTestMatStandalone, Determinant_3x3)
{
constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.Determinant();
constexpr auto det = Mat<3, 3>{{6, 1, 1}, {4, -2, 5}, {2, 8, 7}}.determinant();
EXPECT_FLOAT_EQ(det, -306.0f);
}
// Test Minor for 3x3 matrix
TEST(UnitTestMatStandalone, Minor_3x3)
TEST(UnitTestMatStandalone, Strip_3x3)
{
constexpr Mat<3, 3> m{{3, 0, 2}, {2, 0, -2}, {0, 1, 1}};
auto minor = m.Minor(0, 0);
EXPECT_EQ(minor.RowCount(), 2);
EXPECT_EQ(minor.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(minor.At(0, 0), 0.0f);
EXPECT_FLOAT_EQ(minor.At(0, 1), -2.0f);
EXPECT_FLOAT_EQ(minor.At(1, 0), 1.0f);
EXPECT_FLOAT_EQ(minor.At(1, 1), 1.0f);
auto minor = m.strip(0, 0);
EXPECT_EQ(minor.row_count(), 2);
EXPECT_EQ(minor.columns_count(), 2);
EXPECT_FLOAT_EQ(minor.at(0, 0), 0.0f);
EXPECT_FLOAT_EQ(minor.at(0, 1), -2.0f);
EXPECT_FLOAT_EQ(minor.at(1, 0), 1.0f);
EXPECT_FLOAT_EQ(minor.at(1, 1), 1.0f);
}
// Test Transpose for non-square matrix
TEST(UnitTestMatStandalone, Transpose_NonSquare)
{
constexpr Mat<2, 3> m{{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}};
auto transposed = m.Transposed();
EXPECT_EQ(transposed.RowCount(), 3);
EXPECT_EQ(transposed.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(transposed.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 0), 2.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 0), 3.0f);
EXPECT_FLOAT_EQ(transposed.At(0, 1), 4.0f);
EXPECT_FLOAT_EQ(transposed.At(1, 1), 5.0f);
EXPECT_FLOAT_EQ(transposed.At(2, 1), 6.0f);
auto transposed = m.transposed();
EXPECT_EQ(transposed.row_count(), 3);
EXPECT_EQ(transposed.columns_count(), 2);
EXPECT_FLOAT_EQ(transposed.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(transposed.at(1, 0), 2.0f);
EXPECT_FLOAT_EQ(transposed.at(2, 0), 3.0f);
EXPECT_FLOAT_EQ(transposed.at(0, 1), 4.0f);
EXPECT_FLOAT_EQ(transposed.at(1, 1), 5.0f);
EXPECT_FLOAT_EQ(transposed.at(2, 1), 6.0f);
}
TEST(UnitTestMatStandalone, Enverse)
{
constexpr Mat<2, 2> m{{1.0f, 3.0f}, {2.0f, 5.0f}};
constexpr Mat<2,2> mv{{-5.0f, 3.0f}, {2.0f, -1.0f}};
EXPECT_EQ(mv, m.inverted());
}

View File

@@ -1,6 +1,9 @@
//
// Created by vlad on 5/18/2024.
//
#ifdef OMATH_ENABLE_LEGACY
#include <gtest/gtest.h>
#include <omath/matrix.hpp>
#include "omath/vector3.hpp"
@@ -25,8 +28,8 @@ protected:
TEST_F(UnitTestMatrix, Constructor_Size)
{
const Matrix m(3, 3);
EXPECT_EQ(m.RowCount(), 3);
EXPECT_EQ(m.ColumnsCount(), 3);
EXPECT_EQ(m.row_count(), 3);
EXPECT_EQ(m.columns_count(), 3);
}
TEST_F(UnitTestMatrix, Operator_SquareBrackets)
@@ -41,120 +44,120 @@ TEST_F(UnitTestMatrix, Operator_SquareBrackets)
TEST_F(UnitTestMatrix, Constructor_InitializerList)
{
Matrix m{{1.0f, 2.0f}, {3.0f, 4.0f}};
EXPECT_EQ(m.RowCount(), 2);
EXPECT_EQ(m.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m.At(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.At(1, 1), 4.0f);
EXPECT_EQ(m.row_count(), 2);
EXPECT_EQ(m.columns_count(), 2);
EXPECT_FLOAT_EQ(m.at(0, 0), 1.0f);
EXPECT_FLOAT_EQ(m.at(1, 1), 4.0f);
}
TEST_F(UnitTestMatrix, Constructor_Copy)
{
Matrix m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, Constructor_Move)
{
Matrix m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_EQ(m2.RowCount(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.ColumnsCount(), 0);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}
// Test matrix operations
TEST_F(UnitTestMatrix, Operator_Multiplication_Matrix)
{
Matrix m3 = m2 * m2;
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 22.0f);
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 7.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 22.0f);
}
TEST_F(UnitTestMatrix, Operator_Multiplication_Scalar)
{
Matrix m3 = m2 * 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 8.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 2.0f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 8.0f);
}
TEST_F(UnitTestMatrix, Operator_Division_Scalar)
{
Matrix m3 = m2 / 2.0f;
EXPECT_FLOAT_EQ(m3.At(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.At(1, 1), 2.0f);
EXPECT_FLOAT_EQ(m3.at(0, 0), 0.5f);
EXPECT_FLOAT_EQ(m3.at(1, 1), 2.0f);
}
// Test matrix functions
TEST_F(UnitTestMatrix, Transpose)
{
Matrix m3 = m2.Transpose();
EXPECT_FLOAT_EQ(m3.At(0, 1), 3.0f);
EXPECT_FLOAT_EQ(m3.At(1, 0), 2.0f);
Matrix m3 = m2.transpose();
EXPECT_FLOAT_EQ(m3.at(0, 1), 3.0f);
EXPECT_FLOAT_EQ(m3.at(1, 0), 2.0f);
}
TEST_F(UnitTestMatrix, Determinant)
{
const float det = m2.Determinant();
const float det = m2.determinant();
EXPECT_FLOAT_EQ(det, -2.0f);
}
TEST_F(UnitTestMatrix, Minor)
{
const float minor = m2.Minor(0, 0);
const float minor = m2.minor(0, 0);
EXPECT_FLOAT_EQ(minor, 4.0f);
}
TEST_F(UnitTestMatrix, AlgComplement)
{
const float algComp = m2.AlgComplement(0, 0);
const float algComp = m2.alg_complement(0, 0);
EXPECT_FLOAT_EQ(algComp, 4.0f);
}
TEST_F(UnitTestMatrix, Strip)
{
Matrix m3 = m2.Strip(0, 0);
EXPECT_EQ(m3.RowCount(), 1);
EXPECT_EQ(m3.ColumnsCount(), 1);
EXPECT_FLOAT_EQ(m3.At(0, 0), 4.0f);
Matrix m3 = m2.strip(0, 0);
EXPECT_EQ(m3.row_count(), 1);
EXPECT_EQ(m3.columns_count(), 1);
EXPECT_FLOAT_EQ(m3.at(0, 0), 4.0f);
}
TEST_F(UnitTestMatrix, ProjectionMatrix)
{
const Matrix proj = Matrix::ProjectionMatrix(45.0f, 1.33f, 0.1f, 100.0f);
EXPECT_EQ(proj.RowCount(), 4);
EXPECT_EQ(proj.ColumnsCount(), 4);
const Matrix proj = Matrix::projection_matrix(45.0f, 1.33f, 0.1f, 100.0f);
EXPECT_EQ(proj.row_count(), 4);
EXPECT_EQ(proj.columns_count(), 4);
// Further checks on projection matrix elements could be added
}
// Test other member functions
TEST_F(UnitTestMatrix, Set)
{
m1.Set(3.0f);
EXPECT_FLOAT_EQ(m1.At(0, 0), 3.0f);
EXPECT_FLOAT_EQ(m1.At(1, 1), 3.0f);
m1.set(3.0f);
EXPECT_FLOAT_EQ(m1.at(0, 0), 3.0f);
EXPECT_FLOAT_EQ(m1.at(1, 1), 3.0f);
}
TEST_F(UnitTestMatrix, Sum)
{
const float sum = m2.Sum();
const float sum = m2.sum();
EXPECT_FLOAT_EQ(sum, 10.0f);
}
TEST_F(UnitTestMatrix, Clear)
{
m2.Clear();
EXPECT_FLOAT_EQ(m2.At(0, 0), 0.0f);
EXPECT_FLOAT_EQ(m2.At(1, 1), 0.0f);
m2.clear();
EXPECT_FLOAT_EQ(m2.at(0, 0), 0.0f);
EXPECT_FLOAT_EQ(m2.at(1, 1), 0.0f);
}
TEST_F(UnitTestMatrix, ToString)
{
const std::string str = m2.ToString();
const std::string str = m2.to_string();
EXPECT_FALSE(str.empty());
}
@@ -163,18 +166,19 @@ TEST_F(UnitTestMatrix, AssignmentOperator_Copy)
{
Matrix m3(2, 2);
m3 = m2;
EXPECT_EQ(m3.RowCount(), m2.RowCount());
EXPECT_EQ(m3.ColumnsCount(), m2.ColumnsCount());
EXPECT_FLOAT_EQ(m3.At(0, 0), m2.At(0, 0));
EXPECT_EQ(m3.row_count(), m2.row_count());
EXPECT_EQ(m3.columns_count(), m2.columns_count());
EXPECT_FLOAT_EQ(m3.at(0, 0), m2.at(0, 0));
}
TEST_F(UnitTestMatrix, AssignmentOperator_Move)
{
Matrix m3(2, 2);
m3 = std::move(m2);
EXPECT_EQ(m3.RowCount(), 2);
EXPECT_EQ(m3.ColumnsCount(), 2);
EXPECT_FLOAT_EQ(m3.At(0, 0), 1.0f);
EXPECT_EQ(m2.RowCount(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.ColumnsCount(), 0);
}
EXPECT_EQ(m3.row_count(), 2);
EXPECT_EQ(m3.columns_count(), 2);
EXPECT_FLOAT_EQ(m3.at(0, 0), 1.0f);
EXPECT_EQ(m2.row_count(), 0); // m2 should be empty after the move
EXPECT_EQ(m2.columns_count(), 0);
}
#endif

View File

@@ -4,13 +4,13 @@
TEST(UnitTestPrediction, PredictionTest)
{
constexpr omath::projectile_prediction::Target target{
.m_origin = {100, 0, 90}, .m_velocity = {0, 0, 0}, .m_isAirborne = false};
.m_origin = {100, 0, 90}, .m_velocity = {0, 0, 0}, .m_is_airborne = false};
constexpr omath::projectile_prediction::Projectile proj = {
.m_origin = {3, 2, 1}, .m_launchSpeed = 5000, .m_gravityScale = 0.4};
.m_origin = {3, 2, 1}, .m_launch_speed = 5000, .m_gravity_scale = 0.4};
const auto viewPoint =
omath::projectile_prediction::ProjPredEngineLegacy(400, 1.f / 1000.f, 50, 5.f).MaybeCalculateAimPoint(proj, target);
omath::projectile_prediction::ProjPredEngineLegacy(400, 1.f / 1000.f, 50, 5.f).maybe_calculate_aim_point(proj, target);
const auto [pitch, yaw, _] = proj.m_origin.ViewAngleTo(viewPoint.value()).AsTuple();
const auto [pitch, yaw, _] = proj.m_origin.view_angle_to(viewPoint.value()).as_tuple();
EXPECT_NEAR(42.547142, pitch, 0.01f);
EXPECT_NEAR(-1.181189, yaw, 0.01f);

View File

@@ -9,9 +9,9 @@
TEST(UnitTestProjection, Projection)
{
const auto x = omath::Angle<float, 0.f, 180.f, omath::AngleFlags::Clamped>::FromDegrees(90.f);
const auto x = omath::Angle<float, 0.f, 180.f, omath::AngleFlags::Clamped>::from_degrees(90.f);
auto cam = omath::source_engine::Camera({0, 0, 0}, omath::source_engine::ViewAngles{}, {1920.f, 1080.f}, x, 0.01f, 1000.f);
const auto projected = cam.WorldToScreen({1000, 0, 50});
const auto projected = cam.world_to_screen({1000, 0, 50});
std::print("{} {} {}", projected->x, projected->y, projected->z);
}

View File

@@ -68,14 +68,14 @@ TEST_F(UnitTestTriangle, Constructor)
TEST_F(UnitTestTriangle, CalculateNormal)
{
// For t1, the normal should point in the +Z direction (0, 0, 1) or (0, 0, -1)
const Vector3 normal_t1 = t1.CalculateNormal();
const Vector3 normal_t1 = t1.calculate_normal();
// Check if it's normalized and pointed along Z (sign can differ, so use absolute check)
EXPECT_NEAR(std::fabs(normal_t1.z), 1.0f, 1e-5f);
EXPECT_NEAR(normal_t1.Length(), 1.0f, 1e-5f);
EXPECT_NEAR(normal_t1.length(), 1.0f, 1e-5f);
// For t3, we expect the normal to be along +Z as well
const Vector3 normal_t3 = t3.CalculateNormal();
const Vector3 normal_t3 = t3.calculate_normal();
EXPECT_NEAR(std::fabs(normal_t3.z), 1.0f, 1e-5f);
}
@@ -83,29 +83,29 @@ TEST_F(UnitTestTriangle, CalculateNormal)
TEST_F(UnitTestTriangle, SideLengths)
{
// For t1 side lengths
EXPECT_FLOAT_EQ(t1.SideALength(), std::sqrt(1.0f)); // distance between (0,0,0) and (1,0,0)
EXPECT_FLOAT_EQ(t1.SideBLength(), std::sqrt(1.0f + 1.0f)); // distance between (4,5,6) & (7,8,9)... but we are testing t1, so let's be accurate:
EXPECT_FLOAT_EQ(t1.side_a_length(), std::sqrt(1.0f)); // distance between (0,0,0) and (1,0,0)
EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(1.0f + 1.0f)); // distance between (4,5,6) & (7,8,9)... but we are testing t1, so let's be accurate:
// Actually, for t1: vertex2=(1,0,0), vertex3=(0,1,0)
// Dist between (0,1,0) and (1,0,0) = sqrt((1-0)^2 + (0-1)^2) = sqrt(1 + 1) = sqrt(2)
EXPECT_FLOAT_EQ(t1.SideBLength(), std::sqrt(2.0f));
EXPECT_FLOAT_EQ(t1.side_b_length(), std::sqrt(2.0f));
// For t3, side a = distance between vertex1=(0,0,0) and vertex2=(2,0,0), which is 2
// side b = distance between vertex3=(0,2,0) and vertex2=(2,0,0), which is sqrt(2^2 + (-2)^2)= sqrt(8)= 2.828...
// We'll just check side a first:
EXPECT_FLOAT_EQ(t3.SideALength(), 2.0f);
EXPECT_FLOAT_EQ(t3.side_a_length(), 2.0f);
// Then side b:
EXPECT_FLOAT_EQ(t3.SideBLength(), std::sqrt(8.0f));
EXPECT_FLOAT_EQ(t3.side_b_length(), std::sqrt(8.0f));
}
// Test side vectors
TEST_F(UnitTestTriangle, SideVectors)
{
const Vector3 sideA_t1 = t1.SideAVector(); // m_vertex1 - m_vertex2
const Vector3 sideA_t1 = t1.side_a_vector(); // m_vertex1 - m_vertex2
EXPECT_FLOAT_EQ(sideA_t1.x, 0.0f - 1.0f);
EXPECT_FLOAT_EQ(sideA_t1.y, 0.0f - 0.0f);
EXPECT_FLOAT_EQ(sideA_t1.z, 0.0f - 0.0f);
const Vector3 sideB_t1 = t1.SideBVector(); // m_vertex3 - m_vertex2
const Vector3 sideB_t1 = t1.side_b_vector(); // m_vertex3 - m_vertex2
EXPECT_FLOAT_EQ(sideB_t1.x, 0.0f - 1.0f);
EXPECT_FLOAT_EQ(sideB_t1.y, 1.0f - 0.0f);
EXPECT_FLOAT_EQ(sideB_t1.z, 0.0f - 0.0f);
@@ -113,19 +113,19 @@ TEST_F(UnitTestTriangle, SideVectors)
TEST_F(UnitTestTriangle, IsRectangular)
{
EXPECT_TRUE(Triangle<Vector3<float>>({2,0,0}, {}, {0,2,0}).IsRectangular());
EXPECT_TRUE(Triangle<Vector3<float>>({2,0,0}, {}, {0,2,0}).is_rectangular());
}
// Test midpoint
TEST_F(UnitTestTriangle, MidPoint)
{
// For t1, midpoint of (0,0,0), (1,0,0), (0,1,0)
const Vector3 mid1 = t1.MidPoint();
const Vector3 mid1 = t1.mid_point();
EXPECT_FLOAT_EQ(mid1.x, (0.0f + 1.0f + 0.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid1.y, (0.0f + 0.0f + 1.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid1.z, 0.0f);
// For t2, midpoint of (1,2,3), (4,5,6), (7,8,9)
const Vector3 mid2 = t2.MidPoint();
const Vector3 mid2 = t2.mid_point();
EXPECT_FLOAT_EQ(mid2.x, (1.0f + 4.0f + 7.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid2.y, (2.0f + 5.0f + 8.0f) / 3.0f);
EXPECT_FLOAT_EQ(mid2.z, (3.0f + 6.0f + 9.0f) / 3.0f);

View File

@@ -150,76 +150,76 @@ TEST_F(UnitTestVector2, SubtractionAssignmentOperator_Float)
// Test other member functions
TEST_F(UnitTestVector2, DistTo)
{
const float dist = v1.DistTo(v2);
const float dist = v1.distance_to(v2);
EXPECT_FLOAT_EQ(dist, std::sqrt(18.0f));
}
TEST_F(UnitTestVector2, DistTo_SamePoint)
{
const float dist = v1.DistTo(v1);
const float dist = v1.distance_to(v1);
EXPECT_FLOAT_EQ(dist, 0.0f);
}
TEST_F(UnitTestVector2, DistToSqr)
{
constexpr float distSqr = Vector2(1.0f, 2.0f).DistToSqr(Vector2(4.0f, 5.0f));
constexpr float distSqr = Vector2(1.0f, 2.0f).distance_to_sqr(Vector2(4.0f, 5.0f));
EXPECT_FLOAT_EQ(distSqr, 18.0f);
}
TEST_F(UnitTestVector2, DistToSqr_SamePoint)
{
constexpr float distSqr = Vector2(1.0f, 2.0f).DistToSqr(Vector2(1.0f, 2.0f));
constexpr float distSqr = Vector2(1.0f, 2.0f).distance_to_sqr(Vector2(1.0f, 2.0f));
EXPECT_FLOAT_EQ(distSqr, 0.0f);
}
TEST_F(UnitTestVector2, DotProduct)
{
constexpr float dot = Vector2(1.0f, 2.0f).Dot(Vector2(4.0f, 5.0f));
constexpr float dot = Vector2(1.0f, 2.0f).dot(Vector2(4.0f, 5.0f));
EXPECT_FLOAT_EQ(dot, 14.0f);
}
TEST_F(UnitTestVector2, DotProduct_PerpendicularVectors)
{
constexpr float dot = Vector2(1.0f, 0.0f).Dot(Vector2(0.0f, 1.0f));
constexpr float dot = Vector2(1.0f, 0.0f).dot(Vector2(0.0f, 1.0f));
EXPECT_FLOAT_EQ(dot, 0.0f);
}
TEST_F(UnitTestVector2, DotProduct_ParallelVectors)
{
constexpr float dot = Vector2(1.0f, 1.0f).Dot(Vector2(2.0f, 2.0f));
constexpr float dot = Vector2(1.0f, 1.0f).dot(Vector2(2.0f, 2.0f));
EXPECT_FLOAT_EQ(dot, 4.0f);
}
TEST_F(UnitTestVector2, Length)
{
const float length = v1.Length();
const float length = v1.length();
EXPECT_FLOAT_EQ(length, std::sqrt(5.0f));
}
TEST_F(UnitTestVector2, Length_ZeroVector)
{
constexpr Vector2 v_zero(0.0f, 0.0f);
const float length = v_zero.Length();
const float length = v_zero.length();
EXPECT_FLOAT_EQ(length, 0.0f);
}
TEST_F(UnitTestVector2, Length_LargeValues)
{
constexpr Vector2 v_large(FLT_MAX, FLT_MAX);
const float length = v_large.Length();
const float length = v_large.length();
EXPECT_TRUE(std::isinf(length));
}
TEST_F(UnitTestVector2, LengthSqr)
{
constexpr float lengthSqr = Vector2(1.0f, 2.0f).LengthSqr();
constexpr float lengthSqr = Vector2(1.0f, 2.0f).length_sqr();
EXPECT_FLOAT_EQ(lengthSqr, 5.0f);
}
TEST_F(UnitTestVector2, Abs)
{
Vector2 v3(-1.0f, -2.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
}
@@ -227,7 +227,7 @@ TEST_F(UnitTestVector2, Abs)
TEST_F(UnitTestVector2, Abs_PositiveValues)
{
Vector2 v3(1.0f, 2.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
}
@@ -235,26 +235,26 @@ TEST_F(UnitTestVector2, Abs_PositiveValues)
TEST_F(UnitTestVector2, Abs_ZeroValues)
{
Vector2 v3(0.0f, 0.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 0.0f);
EXPECT_FLOAT_EQ(v3.y, 0.0f);
}
TEST_F(UnitTestVector2, Sum)
{
constexpr float sum = Vector2(1.0f, 2.0f).Sum();
constexpr float sum = Vector2(1.0f, 2.0f).sum();
EXPECT_FLOAT_EQ(sum, 3.0f);
}
TEST_F(UnitTestVector2, Sum_NegativeValues)
{
constexpr float sum = Vector2(-1.0f, -2.0f).Sum();
constexpr float sum = Vector2(-1.0f, -2.0f).sum();
EXPECT_FLOAT_EQ(sum, -3.0f);
}
TEST_F(UnitTestVector2, Normalized)
{
const Vector2 v3 = v1.Normalized();
const Vector2 v3 = v1.normalized();
EXPECT_NEAR(v3.x, 0.44721f, 0.0001f);
EXPECT_NEAR(v3.y, 0.89443f, 0.0001f);
}
@@ -262,7 +262,7 @@ TEST_F(UnitTestVector2, Normalized)
TEST_F(UnitTestVector2, Normalized_ZeroVector)
{
constexpr Vector2 v_zero(0.0f, 0.0f);
const Vector2 v_norm = v_zero.Normalized();
const Vector2 v_norm = v_zero.normalized();
EXPECT_FLOAT_EQ(v_norm.x, 0.0f);
EXPECT_FLOAT_EQ(v_norm.y, 0.0f);
}
@@ -270,7 +270,7 @@ TEST_F(UnitTestVector2, Normalized_ZeroVector)
// Test AsTuple method
TEST_F(UnitTestVector2, AsTuple)
{
const auto tuple = v1.AsTuple();
const auto tuple = v1.as_tuple();
EXPECT_FLOAT_EQ(std::get<0>(tuple), v1.x);
EXPECT_FLOAT_EQ(std::get<1>(tuple), v1.y);
}
@@ -347,7 +347,7 @@ TEST_F(UnitTestVector2, NegationOperator_ZeroVector)
}
// Static assertions (compile-time checks)
static_assert(Vector2(1.0f, 2.0f).LengthSqr() == 5.0f, "LengthSqr should be 5");
static_assert(Vector2(1.0f, 2.0f).Dot(Vector2(4.0f, 5.0f)) == 14.0f, "Dot product should be 14");
static_assert(Vector2(4.0f, 5.0f).DistToSqr(Vector2(1.0f, 2.0f)) == 18.0f, "DistToSqr should be 18");
static_assert(Vector2(-1.0f, -2.0f).Abs() == Vector2(1.0f, 2.0f), "Abs should convert negative values to positive");
static_assert(Vector2(1.0f, 2.0f).length_sqr() == 5.0f, "LengthSqr should be 5");
static_assert(Vector2(1.0f, 2.0f).dot(Vector2(4.0f, 5.0f)) == 14.0f, "Dot product should be 14");
static_assert(Vector2(4.0f, 5.0f).distance_to_sqr(Vector2(1.0f, 2.0f)) == 18.0f, "DistToSqr should be 18");
static_assert(Vector2(-1.0f, -2.0f).abs() == Vector2(1.0f, 2.0f), "Abs should convert negative values to positive");

View File

@@ -164,26 +164,26 @@ TEST_F(UnitTestVector3, NegationOperator)
// Test other member functions
TEST_F(UnitTestVector3, DistToSqr)
{
constexpr auto distSqr = Vector3(1.0f, 2.0f, 3.0f).DistToSqr(Vector3(4.0f, 5.0f, 6.0f));
constexpr auto distSqr = Vector3(1.0f, 2.0f, 3.0f).distance_to_sqr(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(distSqr, 27.0f);
}
TEST_F(UnitTestVector3, DotProduct)
{
constexpr auto dot = Vector3(1.0f, 2.0f, 3.0f).Dot(Vector3(4.0f, 5.0f, 6.0f));
constexpr auto dot = Vector3(1.0f, 2.0f, 3.0f).dot(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(dot, 32.0f);
}
TEST_F(UnitTestVector3, LengthSqr)
{
constexpr auto lengthSqr = Vector3(1.0f, 2.0f, 3.0f).LengthSqr();
constexpr auto lengthSqr = Vector3(1.0f, 2.0f, 3.0f).length_sqr();
EXPECT_FLOAT_EQ(lengthSqr, 14.0f);
}
TEST_F(UnitTestVector3, Abs)
{
auto v3 = Vector3(-1.0f, -2.0f, -3.0f);
v3.Abs();
v3.abs();
EXPECT_FLOAT_EQ(v3.x, 1.0f);
EXPECT_FLOAT_EQ(v3.y, 2.0f);
EXPECT_FLOAT_EQ(v3.z, 3.0f);
@@ -191,19 +191,19 @@ TEST_F(UnitTestVector3, Abs)
TEST_F(UnitTestVector3, Sum)
{
constexpr auto sum = Vector3(1.0f, 2.0f, 3.0f).Sum();
constexpr auto sum = Vector3(1.0f, 2.0f, 3.0f).sum();
EXPECT_FLOAT_EQ(sum, 6.0f);
}
TEST_F(UnitTestVector3, Sum2D)
{
constexpr auto sum2D = Vector3(1.0f, 2.0f, 3.0f).Sum2D();
constexpr auto sum2D = Vector3(1.0f, 2.0f, 3.0f).sum_2d();
EXPECT_FLOAT_EQ(sum2D, 3.0f);
}
TEST_F(UnitTestVector3, CrossProduct)
{
constexpr Vector3 v3 = Vector3(1.0f, 2.0f, 3.0f).Cross(Vector3(4.0f, 5.0f, 6.0f));
constexpr Vector3 v3 = Vector3(1.0f, 2.0f, 3.0f).cross(Vector3(4.0f, 5.0f, 6.0f));
EXPECT_FLOAT_EQ(v3.x, -3.0f);
EXPECT_FLOAT_EQ(v3.y, 6.0f);
EXPECT_FLOAT_EQ(v3.z, -3.0f);
@@ -298,41 +298,41 @@ TEST_F(UnitTestVector3, Division_WithNaN)
// Test Length, Length2D, and Normalized
TEST_F(UnitTestVector3, Length)
{
const float length = v1.Length();
const float length = v1.length();
EXPECT_FLOAT_EQ(length, std::sqrt(14.0f));
}
TEST_F(UnitTestVector3, Length_ZeroVector)
{
constexpr Vector3 v_zero(0.0f, 0.0f, 0.0f);
const float length = v_zero.Length();
const float length = v_zero.length();
EXPECT_FLOAT_EQ(length, 0.0f);
}
TEST_F(UnitTestVector3, Length_LargeValues)
{
constexpr Vector3 v_large(FLT_MAX, FLT_MAX, FLT_MAX);
const float length = v_large.Length();
const float length = v_large.length();
EXPECT_TRUE(std::isinf(length));
}
TEST_F(UnitTestVector3, Length2D)
{
const float length2D = v1.Length2D();
const float length2D = v1.length_2d();
EXPECT_FLOAT_EQ(length2D, std::sqrt(5.0f));
}
TEST_F(UnitTestVector3, Normalized)
{
const Vector3 v_norm = v1.Normalized();
const float length = v_norm.Length();
const Vector3 v_norm = v1.normalized();
const float length = v_norm.length();
EXPECT_NEAR(length, 1.0f, 0.0001f);
}
TEST_F(UnitTestVector3, Normalized_ZeroVector)
{
constexpr Vector3 v_zero(0.0f, 0.0f, 0.0f);
const Vector3 v_norm = v_zero.Normalized();
const Vector3 v_norm = v_zero.normalized();
EXPECT_FLOAT_EQ(v_norm.x, 0.0f);
EXPECT_FLOAT_EQ(v_norm.y, 0.0f);
EXPECT_FLOAT_EQ(v_norm.z, 0.0f);
@@ -343,7 +343,7 @@ TEST_F(UnitTestVector3, CrossProduct_ParallelVectors)
{
constexpr Vector3 v_a(1.0f, 2.0f, 3.0f);
constexpr Vector3 v_b = v_a * 2.0f; // Parallel to v_a
constexpr Vector3 cross = v_a.Cross(v_b);
constexpr Vector3 cross = v_a.cross(v_b);
EXPECT_FLOAT_EQ(cross.x, 0.0f);
EXPECT_FLOAT_EQ(cross.y, 0.0f);
EXPECT_FLOAT_EQ(cross.z, 0.0f);
@@ -353,7 +353,7 @@ TEST_F(UnitTestVector3, CrossProduct_OrthogonalVectors)
{
constexpr Vector3 v_a(1.0f, 0.0f, 0.0f);
constexpr Vector3 v_b(0.0f, 1.0f, 0.0f);
constexpr Vector3 cross = v_a.Cross(v_b);
constexpr Vector3 cross = v_a.cross(v_b);
EXPECT_FLOAT_EQ(cross.x, 0.0f);
EXPECT_FLOAT_EQ(cross.y, 0.0f);
EXPECT_FLOAT_EQ(cross.z, 1.0f);
@@ -381,7 +381,7 @@ TEST_F(UnitTestVector3, Subtraction_NegativeValues)
// Test AsTuple method
TEST_F(UnitTestVector3, AsTuple)
{
const auto tuple = v1.AsTuple();
const auto tuple = v1.as_tuple();
EXPECT_FLOAT_EQ(std::get<0>(tuple), v1.x);
EXPECT_FLOAT_EQ(std::get<1>(tuple), v1.y);
EXPECT_FLOAT_EQ(std::get<2>(tuple), v1.z);
@@ -390,20 +390,20 @@ TEST_F(UnitTestVector3, AsTuple)
// Test AsTuple method
TEST_F(UnitTestVector3, AngleBeatween)
{
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).AngleBetween({1, 0 ,0}).value().AsDegrees(), 90.0f);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).AngleBetween({0.0f, 0.0f, 1.0f}).value().AsDegrees(), 0.0f);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).AngleBetween({0.0f, 0.0f, 1.0f}).has_value());
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).angle_between({1, 0 ,0}).value().as_degrees(), 90.0f);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).angle_between({0.0f, 0.0f, 1.0f}).value().as_degrees(), 0.0f);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).angle_between({0.0f, 0.0f, 1.0f}).has_value());
}
TEST_F(UnitTestVector3, IsPerpendicular)
{
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).IsPerpendicular({1, 0 ,0}), true);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).IsPerpendicular({0.0f, 0.0f, 1.0f}), false);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).IsPerpendicular({0.0f, 0.0f, 1.0f}));
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).is_perpendicular({1, 0 ,0}), true);
EXPECT_EQ(Vector3(0.0f, 0.0f, 1.0f).is_perpendicular({0.0f, 0.0f, 1.0f}), false);
EXPECT_FALSE(Vector3(0.0f, 0.0f, 0.0f).is_perpendicular({0.0f, 0.0f, 1.0f}));
}
// Static assertions (compile-time checks)
static_assert(Vector3(1.0f, 2.0f, 3.0f).LengthSqr() == 14.0f, "LengthSqr should be 14");
static_assert(Vector3(1.0f, 2.0f, 3.0f).Dot(Vector3(4.0f, 5.0f, 6.0f)) == 32.0f, "Dot product should be 32");
static_assert(Vector3(4.0f, 5.0f, 6.0f).DistToSqr(Vector3(1.0f, 2.0f, 3.0f)) == 27.0f, "DistToSqr should be 27");
static_assert(Vector3(-1.0f, -2.0f, -3.0f).Abs() == Vector3(1.0f, 2.0f, 3.0f), "Abs should convert negative values to positive");
static_assert(Vector3(1.0f, 2.0f, 3.0f).length_sqr() == 14.0f, "LengthSqr should be 14");
static_assert(Vector3(1.0f, 2.0f, 3.0f).dot(Vector3(4.0f, 5.0f, 6.0f)) == 32.0f, "Dot product should be 32");
static_assert(Vector3(4.0f, 5.0f, 6.0f).distance_to_sqr(Vector3(1.0f, 2.0f, 3.0f)) == 27.0f, "DistToSqr should be 27");
static_assert(Vector3(-1.0f, -2.0f, -3.0f).abs() == Vector3(1.0f, 2.0f, 3.0f), "Abs should convert negative values to positive");

Some files were not shown because too many files have changed in this diff Show More